

OP-Schulung 2024

GSIHEST

"Wiederinbetriebnahme" Strahllagemonitore

O. Chorniy, H. Bräuning, W. Kaufmann, C. Krüger, K. Lang, A. Reiter und R. Hari (BPM FESA Klasse, Cosylab) Dezember 2024

Agenda & Überblick

Detektoren für die schnelle Extraktion:

Strahllagemonitore / Beam Position Monitors (BPM)

- Ausgangspunkt
 - BPMs nicht benutzt seit ~10 Jahren
- Ziel
 - Test von FAIR HEBT Hardware inkl. Software (Version V1)
 - Kontrollsystem-Integration (Timing, Datenversorgung LSA, etc.) für spätere Anwendungen
- Status: Wiederinbetriebnahme Strahllagemonitore
 - Übersicht Detektoren & Aufbau der Datenerfassung
 - Erste Messungen an HHD und bei "sauberem" Transfer SIS18 ESR
 - Messungen bei "unsauberem Transfer": Betrieb mit Stripper-Folie
 - "Ergebnisse"

1 – Übersicht & Aufbau der Datenerfassung

BPM@GSI HEST Überblick BPM Detektoren

FAIR GmbH | GSI GmbH

4

BPM Hardware Setup Gleiches Auslesekonzept wie in SIS18 (, HEBT, SIS100,..)

BPM Software Integration Orbit Control HEBT

 HEST BPMs sind in Orbit Control verfügbar

Anwahl des gewünschten Zyklus liefert Positionswerte als Bar-Chart oder zusätzlich als Trenddaten.

Datenerfassung – Software V1 Grobes Schema

- 1) **Filterung** der Rohdaten verbessert die Signalqualität
 - HPA110 hat schaltbaren Filter am Ausgang: Bandbreite 55 MHz => 7 MHz
 - Basis-Software enthält rekursive Filter (Hoch-/Tiefpass, Notch, gleitender Mittelwert)
- 2) Gating selektiert Strahlpuls
 - DAQ erfasst < 50 µs (12500 Punkte)
 - Umlaufzeit SIS18 ~ 1 µs
 - V1: Zuschnitt des interessanten Bereichs durch einfache Schwellenanalyse und Kenntnis der Umlaufzeit
 - V2: Automatische Gate-Berechnung per LSA-Anbindung (Flugzeit, Umlauffrequenz, etc.) ab 2025

3) Positionsberechnung

- Messung der Asymmetrie mit Ansatz:
 x = Differenz über Summe
 - = Delta/Sum
- Alte Koeffizienten werden benutzt f
 ür Polynom 2. Ordnung
 - Pos (m) = 0,0348 x² + 0,0171 x - 0,0015

7

2 – Erste Messungen

Strahlweg. "Saubere" Signale entlang des Strahlwegs

Strahlzeit 2024 Uran (Stoch. Cooling Test) – "saubere" Signalformen

GTE4DP1

GTE3DP3

GHHDDP3

Sample no. (x 1.0e+00)

Datenerfassung – Software V1 HHD Dump: Vergleich BPM und SEM-Grid HHDDG3 (hor.)

- Positionsvariation durch Änderung an GTS1MU2.
- Reduktion von Rauschen und Störungen durch starke Filterung
- Vergleich der Positionen ist grob OK.
 Klare Korrelation zwischen Detektoren.
- SEM-Grid: Positionen sind etwas größer (~7%).

FAIR GmbH | GSI GmbH

3 – Messungen bei "unsauberem" ESR Transfer

März 2024: 197-Au-65+ Strahl 65 MeV/u SIS – ESR Transfer "SIS18_FAST_Au_ESR"

- Transmission FCTs GTE1DT und GTE5DT ~ 0.2
- Gain: 60 dB, low-pass Filter aktiv
- SIS18-ESR-Transfer: GHHDDP3 nicht in Strahlweg.
- Nach Folie und vielen Magneten entstehen "undefinierte" Verhältnisse im Strahlrohr.
- Die ersten 3 BPMs bis kurz nach der Stripping Folie zeigen identische Signalformen.

- Auf dem 5. BPM GTE4DPC wird wohl die rechte Elektrode getroffen, so dass auf allen anderen Elektroden die Signalform verzerrt wird.
- Auf dem letzten BPM GTE5DP2 vor dem ESR Einschuss ist das Signal nicht nutzbar.

4 – Ergebnisse: "Richtungsstreit" BPM – PG

"Wiederhole nie eine Messung. Das macht nur Ärger." (Hr. Caps, Physiklehrer)

Ergebnisse: Richtungsstreit Vergleich BPM und SEM-Grid HHDDG3 (ver.) & GTE4DG9 (hor.)

Horizontal

50.0

25.0

± -25.0

rms = 29.63 | mean = 14.83

m] 0.0

50.0

F 25.0

2 -25.0

-50.0

- GHHDDG3 (ver.):
 - BPM DX & Leuchtschirm DF zeigen in die gleiche Richtung
 - SEM-Grid DG zeigt in die andere Richtung
- GTE4DG9 (hor.):
 - BPM und SEM-Grid zeigen in verschiedene Richtungen bei ähnlichem Wert der Strahlablage
 - GTE4DX9: Test im Shutdown OK
 - GTE4DG9: Test im Shutdown deutet auf falsche Konfiguration hin.
 - Diese Vermutung gilt auch f
 ür 3 andere Gitter in GTE-Linie.
- Prüfung mehrerer GTEx Gitter in nächster Strahlzeit ratsam!
 - (C. Hessler im Austausch mit OPE)

HEST BPM Positionen in "Orbit Control" Applikation + GTE2DP1 + GHHDDP3 + GTE3DP3 + GTE4DP1 + GTE4DP9 + GTE4DP2

GTE4DX9

Pos ≈ + 22 mm

Wieder-Inbetriebnahme BPMs 2023 / 2024 Erste Ergebnisse & Ausblick

November 2023 - erste Tests

- Basis-Software V1 erfolgreich getestet mit BPM in HHD (ausreichend für "einfache" SIS18 SIS100 Inbetriebnahme) ~ OK
- HW und SW Filter wirkungsvoll bei Unterdrückung von Störungen und Reduktion von Rauschen ~ OK
- HHD Scan: Vergleich der Positionen von BPM und SEM-Grid ~ OK

Strahlzeit 2024 - erste Messungen

- Winterpause: Störungen weitestgehend eliminiert durch verbesserte "Erdung" der BPMs ~ OK
- Strahlzeit: Erste Messungen während verschiedener Strahltransfers ~ OK

Strahlzeit 2025 – weitere Entwicklung

- Für FAIR:
 - Test der Software V2 (LSA Datenversorgung und automatische Gate-Berechnung mittels Flugzeit)
 - Integration in Kontrollsystem: FESA Front-End und Concentrator Software wie bei Ring-Systemen
 - SW GUI / Anwendung: Orbit Control
- Für HEST: Entwicklung einer Steering-Applikation mittels BENNO (C. Hessler)
- Für BEA: Prüfung GTEx Profilgitter!
- Für OPE: Nutzung von Orbit Control Applikation ist grundsätzlich möglich

ANHANG

HEST BPM DAQ project Purpose & Aim

- Proposal HEST-AP-222.01 by C. Hessler, Commissioning of BPMs in TE beamline and related extensions of BENNO application.
- Revive the BPM readout (old system not used any more for many years) using available hardware for FAIR HEBT
- Test basic sequence-multiplexed DAQ software (front-end software and concentrator) provided by SLO in-kind partner Cosylab in 2021/2022.
- Use HEST system for further software developments (collaboration BEA, ACO, SLO).
- Some signals were duplicated in an active splitter module and fed to an oscilloscope for independent and flexible acquisition.
- Machine experiment HHD (FAST) in November 2023
- Parallel data taking during pysics runs in beam time 2024

		What's Running? @ PRO				_ 0)	
Time Range (s):	120	What's Running?		VirtAcc Info	Legend Über	22.11.2023 02:55:14	
				HHD (KO)			
			¹⁴ N ⁷⁺	500.0 MeV/u	U 02 S 0	1	
			HHD (FAST)				
				FAST_HHD_STICKSTOFF_BOZYK.C1			
			¹⁴ N ⁷⁺	500.0 MeV/u	U 04 S 04	4	
			SIS18 EAST HTP 20231118 115428 C1				
			¹⁴ N ⁷⁺	500.0 MeV/u	U 04 S 0	2	
	•• *• *• *• *• *• *• *• *• *• *• *• *• *		HTP via TH (KO)				
			SCRAT	CH_OP_SIS18_KO_HT	FP_20231121_2304	413.C1	
			14N / 1	500.0 WeV/U	0.04 50	3	

Data Acquisition – Basic Software Data Flow Chart

Main software features (SW Version 1):

- Raw ADC and scaled voltage signals available and derived quantities
- FFT spectrum to check signal frequency content
- Post-processing: simple frequency filters (recursive filters)
- **Gating**: Position and uncertainty calculations in gated region around beam pulses (batch)
- Different options for gate definition and peak position determination
- Position calculations for single and all bunches (including possibility of different capacitance values of electrodes = offset) using 2nd order polynomial
- Further data on system & health status

Not yet included in current software:

- LSA data supply for relevant parameters like beam energy, charge, harmonic number, rf frequency (SW Version 2 => beam time 2025)
- Final details on required timing events for precise trigger/beam pulse gate, e.g. new events 2052 or new kicker timing message (SW Version 2)
- Multiple kickers for BPMs behind SIS18 and SIS100
- Booster mode

FAIR GmbH | GSI GmbH

Trend vertikaler Positionen (m) Uran-Strahl nach HTA

