QCD@FAIR Workshop 2024, 13 November

- Simulation Chapter 9 session

Simulation of pp—pp J/ ψ (µ+µ-) with CbmRoot

Shreya Roy

Outline

Motivation for pp ${\rightarrow} \text{pp}$ Jpsi

CBM acceptance for pp exclusive events studies

Event reconstruction & STS performance

Analysis strategy

Results

LHCb (pentaquark state discovery)

How does simulated events look? Pluto generator

100

The CBM detector

Geometry : sis100_muon_lmvm

Beam direction z

CBM opening angle acceptance

Simulation chain

- Transport GEANT3
- Digitisation
- Hit reconstruction
- Track reconstruction STS (CA + KF)
- Global track reconstruction
- Analysis and Candidate selection (using MUCH PID)
- Exclusive reaction study exploiting high-level kinematic fitting tools with preliminary 4C response

Track reconstruction and PID

STS and TOF Performance

STS track properties

χ^2/ndf vs p

Energy loss in STS vs track Qp (reconstructed)

all particles STS 4 300 dE/dx [MeV/cm] h_dedx_p 32080 Entries 3.5 3.954 Mean x 250 Mean y 0.7193 Std Dev x 7.866 3 Std Dev y 0.1215 200 -2.5 2 150 1.5 100 50 0.5 0 030 -20 20 30 -1010 0 Qp [GeV]

STS Performance

Reconstruction efficiency of muons (vs p)

Reconstruction efficiency of muons (vs theta)

Reconstruction efficiency of protons

Candidate selection

Global tracks per event

Selected Muon tracks

Selected Proton tracks

How well are the protons identified ?

How well are the muons identified ?

Muon PID with MuCh

Muons

MuCh hits MuCh hits ---p (GeV) p (GeV)

Protons

STS hits

Results (J/ $\psi \rightarrow$ invariant Mass)

 $pp \rightarrow pp J/\psi (\mu+\mu-)$, 100k events

28% events are reconstructed

We were expecting 30 % from acceptance / fast sim calculations.

0.07% fake reconstructed J/ψ events

4C kinematic fit

KinFit - Experiment independent fitting tool Chi2 minimization procedure based on Lagrange multiplier technique.

About the 4C fit : • 4-momenta of all-final state particles conserved w.r.t. beam-target system

Results : J/ψ p mass (MC truth - reconstructed)

Results (Dalitz plot with 4C fit)

Back up

Exclusivity

Check this plot

How the event looks like? Pluto generator (tbr)

TLab = 29 GeV

Momentum theta distributions Pluto Generator

10 E

Electron

munum

p (GeV)

(deg.)

Results (Dalitz plot)

Results (J/ ψ p mass resolution)

Results (Dalitz plot with 4C fit)

Results (Dalitz plot with 4C fit)

Momentum resolution

Why study pp->Jpsi pp ?

1) charm production as reference for HI reactions;

2) structure of the proton, such as intrinsic ccbar in proton wave function and "mass" radius via study of J/psi+p --> J/psi+p final state interactions;

3) hidden-charm exotic states spectroscopy (LHCb example), e.g. P->J/psi + p and P-> D + Lambda_c studies