QCD at FAIR, Chapter 9

Brainstorming on opportunities

at the FRS/S-FRS with WASA/S-WASA

Kenta Itahashi RIKEN Nishina Center

QCD at FAIR, Chapter 9

Brainstorming on opportunities of hadron physics at the FRS/S-FRS with WASA/S-WASA

Kenta Itahashi RIKEN Nishina Center

Facilities side by side

FRS

Super-FRS hadron beam intensities

Advantages

Pion / pbar beams available Spectroscopy Dispersion matching (mu beams?)

Disadvantages

No E×B \rightarrow need of special optics Too long beamline \rightarrow No K beam Long spectrometer \rightarrow No K meas. FMF2 area is too small...

Other facilities

J-PARC K1.8(BR) for pion / K / pbar beams J-PARC HIHR for DM pion / pbar beams R³B for pbar with forward detectors

FRS+Large Ω charged particle detector is unique but

Physics interests may include

- 1. η' or η mesic nuclei
- 2. Double kaonic nuclei search
- 3. Hadron production studies

Feasibility is not yet considered

η'-mesic nuclei spectroscopy in ¹²C(p,d) S457

Missing mass measurement of η' -mesic nuclei in FRS

Together with HypHI exp.

FRS S2-S2: forward spectrometer with ~ 2.5 MeV energy resolution WASA: $\eta'NN \rightarrow NN$ tagging

Pion induced η'-mesic nuclei spectroscopy η'-mesic nuclei

(π^+, p) has much larger cross section

→ Missing mass measurement for spectroscopy in SFRS

First step	(π,р)	DM inclusive measurement	Simple setup
Second step	(π,p) w. decay tagging	semi-exclusive	Large Ω tracker

Nagahiro, NPA914, 360 (2013) Nagahiro et al., PRC80, 025205 (2009)

S490-η' Step1: Missing-mass of (*π,p*) inclusive measurement

Nagahiro, NPA914, 360 (2013) Nagahiro et al., PRC80, 025205 (2009)

Pion induced η -mesic nuclei spectroscopy η -mesic nuclei in (π^+, p) or ($d, {}^{3}$ He)

If we can place a forward neutron counter, (π -,n) can also be a candidate

Nagahiro, NPA914, 360 (2013) Nagahiro et al., PRC80, 025205 (2009)

Physics interests may include

- 1. η' or η mesic nuclei
- 2. Double kaonic nuclei search
- 3. Hadron production studies

Feasibility is not yet considered

Double Kaonic Nuclear Cluster

Antikaons in Nuclei by Antiproton Annihilation

 $p + 3He \rightarrow ppK^- + K^0$

Production of ppK⁻ cluste⁻⁻⁻ the n in ³He and creation

Missing mass spectrosco

Invariant mass of ppK⁻ \rightarrow

Exclusive formation and a 4π -detector allowing K⁰

P. Kienle ECT* Antiproton Workshop 03.07.2006

P.Kienle, ECT* 2006

First idea by late Prof. Em. P. Kienle

Double Antikaon Production in Nuclei by Antiproton Annihilation

The process:

$\bar{p} + p \to K^+ + K^+ + K^- + K^- - 0.098 \text{ GeV}$

- The cross section: $\frac{\sigma(\bar{p}\,p \to K^+K^-\pi^+\pi^-)}{\sigma(\bar{p}\,p \to 2\pi^+2\pi^-)} \sim 0.1$ $\sigma(\bar{p}\,p \to 2K^+\,2K^-) \sim 10\,\mu b$
- The kinematics $\sqrt{M^2 + \vec{p}_0^2} = 2m_K$ $p_{0,lab} \simeq 652 \text{ MeV/c}$
- Double kaon production in nuclei:

$$\bar{p} \ ^{4}He \rightarrow K^{+}K^{+} + [K^{-}K^{-}pnn]$$

 $\bar{p} \ ^{6}Li \rightarrow K^{+}K^{+} + [K^{-}K^{-}pp3n]$

→ With the binding energy exceeding ~ 225 MeV, double kaonic nuclei can be produced even by stopped antiprotons.

Double Kaonic Nuclear Cluster

AMD calculations show very large binding energies for double K clusters partly due to the very concentrated densities

K cluster	Mc^2	E_K	Γ_K	$\rho(0)$	$R_{\rm rms}$	$k_{\mathcal{P}}$	k_K
	[MeV]	[MeV]	[MeV]	$[\mathrm{fm}^{-3}]$	[fm]	[fm ⁻¹]	$[fm^{-1}]$
pK ⁻	1407	27	40	0.59	0.45	1.37	1.37
ppK ⁻	2322	48	61	0.52	0.99	1.49	1.18
pppK ⁻	3211	97	13	1.56	0.81		
ppnK ⁻	3192	118	21	1.50	0.72		
ppppK ⁻	4171	75	162	1.68	0.95		
pppnK ⁻	4135	113	26	1.29	0.97		
ppnnK ⁻	4135	114	34		1.12		
ррК-К-	2747	117	35				
ppnK ⁻ K ⁻	3582	221	37	2.97	0.69		
pppnK ⁻ K ⁻	4511	230	61	2.33	0.73		

PL, B587, 167 (2004)

J-PARC E15 Discovered K-pp Bound-State

Yamaga et al., PhysRevC.102.044002 (2020)

K-K-pp search by stopped pbar at J-PARC

Experimental Principle

 We search for S=-2 dibaryon with p^{bar}+³He annihilation at rest (3N absorption):

$$\overline{p} + {}^{3}He \rightarrow K^{+} + K^{0} + X, \quad X \rightarrow \Lambda\Lambda$$

 $\int \frac{\text{final state: } K^+ + K^0 + \Lambda + \Lambda}{\pi^+ \pi^-} \int_{p}^{\psi} \pi^- p^{\pi^-} p^{\pi^-}$ - if K⁻K⁻pp state exists with <u>deep bound energy</u>:

$$\bar{p} + {}^{3}He \rightarrow K^{+} + K^{0} + K^{-}K^{-}pp + B.E. -109MeV$$

- if H-dibaryon (resonance) exists:

$$\bar{p} + {}^{3}He \rightarrow K^{+} + K^{0} + H$$

We can investigate S=-2 dibaryon with inclusive or exclusive measurement

Sakuma, Lol for J-PARC (2009)

Not easy...because

- Absorption at rest has not enough energy to populate shallow bound states.
- In-flight events can contaminate easily.
- Number of stopped pbar is limited.

⁹Be(pbar,p) reaction for DKNC search at Super-FRS

For KKpp, I came to think of reaction

pbar + 4He -> forward n + pbar + 3He
 pbar + 3He -> K+K0 + (K-K-pp)
 with different angles for finite q
 if we have a forward neutron counter

Comments

- We still need theoretical calculations for cross sections.
- Identifying K+K- leads to φ in nucleus
- Experiment may be feasible with ~4pi detector at FMF2 such as smaller WASA

Hadron Production Studies

- Pion/pbar induced hadron production cross section measurement (together with hadron rescattering within the target volume)
- hadron-nucleon final state interaction → low energy scattering length

```
example:

\pi+H \rightarrow \eta/\omega/\eta' + p

\pi+D \rightarrow \eta/\omega/\eta' + n + p

\pi+D \rightarrow K^+ + \Lambda + n

pbar + H \rightarrow ...
```

Other hadrons can also be studied, which may include exotic hadrons if the cross section and energy are sufficient...

May need dev. of neutral detectors

Summary

- Super-FRS may open possibilities of using "exotic" beams such as pion or pbar.
- (Super-)FRS + (p)WASA may provide unique opportunities of high-resolution inflight spectrometer + large acceptance detector
- We may need develop dedicated beam optics to overcome lack of E×B
- Dispersion matching may be advantages for high-resolution spectroscopy

In our sight are:

- Studies of hadron production including FSI or rescattering
- Studies of hadron(s) in nuclei can be performed with SFRS+ pWASA
- d*(2380) in nuclei, dibaryon resonance with nuclear target by d + A \rightarrow ³He $\pi\pi$ A'
- σ-meson [f0(500)] on H or D targets by (π+,p) or by (d,³He) with full kinematical reconstruction.

