

Investigation of Dimuon Combinatorial Background at FAIR SIS100

Sk Anowar

Under the guidance of **Partha Pratim Bhaduri**

Contents

- 1. Introduction
- 2. Origin of Combinatorial Background
- 3. Background estimation Techniques
- 4. Simulation Setup
- 5. Results
- 6. Summary
- 7. Future plan

Motivation and Physics of Di-Muon Studies

- **Dimuons** are penetrating probes of the strongly interacting matter formed in heavy-ion collisions.
- Since they do not undergo strong final-state interactions, they preserve information from all stages of the collision.
- Their invariant mass spectrum reflects contributions from:

```
Vector meson decays (\rho, \omega, \phi)
Drell-Yan and open charm processes(very small in sis100 A-A collision)
Thermal radiation from the QGP and hadronic medium
```

■ These studies reveal:

In-medium modification of vector mesons Restoration of chiral symmetry and deconfinement Space-time evolution of the fireball

■ To isolate these physics signals from the raw di-muon spectra, an accurate estimation and subtraction of the **combinatorial background** .

ightarrow A realistics and precise modeling of combinatorial background is therefore a crucial step.

Origin of Combinatorial Background

- The **combinatorial background** originates from the **random pairing** of two uncorrelated muon candidates (μ^+ and μ^-) produced in high-energy collision events.
- These random combinations form a **non-physical**, **continuous background** in the invariant mass spectrum, often obscuring the true resonance peaks.
- Primary sources of uncorrelated muons:
 - **Decays of Light Hadrons:** Muons from the abundant decays of charged pions (π^{\pm}) and kaons (K^{\pm}) ; this is typically the dominant source.
 - **Heavy-Flavor Decays:** Muons originating from unrelated semi-leptonic decays of charm (c) and bottom (b) hadrons.(Not present at FAIR energy)
 - Misidentified Hadrons: Non-muon tracks (e.g., pions) mistakenly identified as muons.
- The invariant mass distribution of the raw di-muons show a **broad, smooth continuum** beneath the true signal, which must be carefully modeled and subtracted to obtain the genuine resonance yield.

Techniques for Combinatorial Background Estimation

Available techniques for combinatorial background estimations are,

- Super Event (SE) Technique
- Like-Sign (LS) Technique
- Mixed Event (ME) Technique
- Event-by-Event (EbE) Technique

Super-Event Technique

Physics Principle:

■ Each muon candidate is combined with all oppositely charged muon candidates from all other events in a given sample to construct an uncorrelated invariant mass distribution.

Pros:

- Provides large statistics for smooth background spectra.
- Statistical uncertainties in large mass bins are significantly reduced.

Cons:

- Applicable only within the same centrality class.
- All merged events must have similar track multiplicities.

Like-Sign Technique

Physics Principle:

- The combinatorial background is estimated using like-sign (LS) pairs within the same event.
- The unlike-sign (OS) combinatorial background is then calculated using:

$$N_{\mathsf{BG}}^{\mathit{OS}} = 2\,\sqrt{N^{\mu^+\mu^+}\cdot N^{\mu^-\mu^-}}$$

Pros:

- Uses same-event information .
- Simple and computationally fast.

Cons:

- Low statistics for LS pairs.
- Sensitive to charge asymmetries or reconstruction biases.
- Possible residual correlations in high-multiplicity events.

Sk Anowar (VECC, HBNI)

Mixed-Event Technique

Physics Principle:

- Oppositely charged muon candidates from different events are randomly combined, provided the events have similar global properties (e.g., multiplicity or impact parameter).
- This breaks all real correlations and provides a purely combinatorial background.

Pros:

- Provides high statistics.
- By design, generates a purely uncorrelated background.
- Naturally handles charge symmetry.

Cons:

- Computationally intensive.
- Requires careful event matching (impact parameter, multiplicity, vertex position, etc.).

Event-by-Event Technique

Physics Principle:

- Oppositely charged muon candidates are combined within the same event to form the invariant mass spectrum.
- This represents the most direct and realistic method to calculate the combinatorial background in raw data.

Pros:

- Uses same-event information .
- Simple and computationally fast.

Cons:

- Poor statistics per event lead to noisy spectra.
- Not suitable for precise background subtraction without large statistics.
- Requires significantly higher statistics to achieve comparable uncertainties in mass bins.

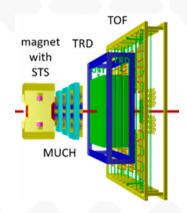
Simulation Setup

■ Event generator:UrQmd

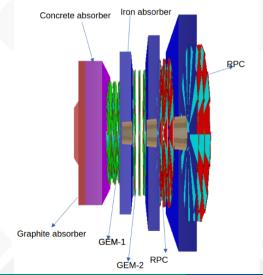
Input File:

/lustre/cbm/prod/gen/urqmd/auau/10gev/centr

■ **System:** Au + Au collisions


Centrality: 0-10%Energy: 10 AGeV

■ Transport Engine: Geant3


■ CBMROOT Version: July 25

■ **Setup:** sis100_muon_lmvm

No of events: 1 million

Muon Chamber (MUCH) for LMVM setup

 Purpose: Identification and tracking of muons produced in heavy-ion collisions.

Structure:

- Each station has 3 layers.
- GEM detectors in first two stations.
- RPC detectors in last two stations.
- Segmented absorber design.
- First absorber is made of 28 cm graphite + 30 cm concrete.
- Remaining absorber are made of iron (20 cm + 20 cm + 30 cm).
- Key Feature: High-rate capability and excellent spatial resolution.

Selection of Muon Candidate

Apply the following cuts to the reconstructed global tracks to select muon candidates:

■ **STShits**: > 7

■ MUCHhits: ≥ 11

 \blacksquare TRDhits: ≥ 1

■ TOFhits: ≥ 1

■ MUCHchi2: ≤ 3.0

■ **STSchi2:** ≤ 3.0

■ Vchi2: < 3.0

Kinematics of reconstructed global tarcks

Momentum distribution of muon candidate from global track.

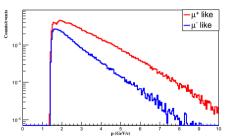
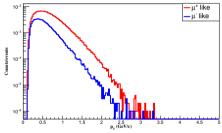



Fig: Momentum distribution from global track.

 $\label{eq:Fig:Transverse} \textbf{Fig:Transverse momentum distribution from global track} \ .$

Invariant Mass Distributions: SE and ME Methods

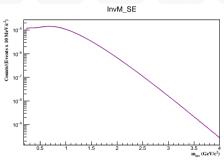


Fig: invariant mass distribution using Super Event(SE) method.

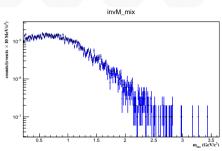


Fig: invariant mass distribution using mix event (ME) method .

Invariant Mass Distributions: LS and EbE Methods

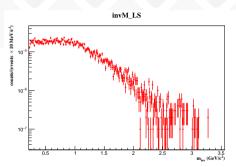


Fig: invariant mass distribution using LS method event by event.

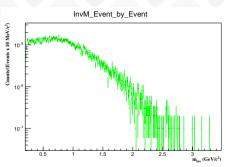


Fig: invariant mass distribution in Event by Event method.

- Charge asymmetry at the single track reconstruction level ($\mu^+ > \mu^-$) reflected in the pair mass distribution.
- More LS pairs than ULS pairs in event by event analysis.

Comparison of All Methods

Comparison of Background Estimation Methods

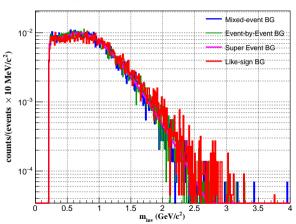


Fig: Comparison of all four methods for background estimation.

Background estimation of Different Techniques

Central Au-Au collision

Mass Window (GeV/ c^2)	Mixed Event	Event-by-Event	Super Event	Like-Sign
ρ (770) (0.730–0.830)	$1.49{ imes}10^{-4}$	1.47×10^{-4}	$1.53{ imes}10^{-4}$	2.09×10^{-4}
ω (782) (0.770–0.790)	4.05×10^{-5}	$3.93{ imes}10^{-5}$	$4.18{ imes}10^{-5}$	$6.27{ imes}10^{-5}$
ϕ (1020) (0.990–1.050)	$7.27{ imes}10^{-5}$	6.71×10^{-5}	7.26×10^{-5}	$1.19{ imes}10^{-4}$
High Mass (1.200–1.300)	$6.79{ imes}10^{-5}$	$6.94{ imes}10^{-5}$	7.06×10^{-5}	$1.12{ imes}10^{-4}$

Comparison of the central values (counts per (event \times 10 MeV/ c^2)) for different invariant mass windows using various techniques.

Summary

- Combinatorial background arises from random, uncorrelated muon pairs in high-energy collisions.
- Systematic evaluation of different techniques of bkg estimation using muon setup at top SIS100 energy and GEANT3 transport engine.
- Key findings from simulations:
 - Super Event methods provide smooth background templates.
 - Mix Event method is more realistic one because it breaks all correlation .
 - Like Sign method is simple but can suffer from low statistics and charge asymmetry. Event by Event method needs more statistics.

Future plan

- Utilize full available stats(5 million events)
- Repeat the simulations with currently foreseen realistic MuCH setup: MuCH+MUST (2 GEM +2 Straw Tube tracker)
- Examine the S/B for different di-muon signals

Thank You!

Back Up

Kinematics of the Accepted MC tracks

Accepted tracks:

■ STSpoints: ≥ 7

■ MuCHpoints: ≥ 11

■ TRDpoints: ≥ 1

■ TOFpoints: ≥ 1

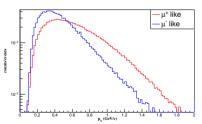


Fig: Momentum distribution at MC level.

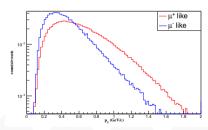


Fig:Transverse momentum distribution at MC level .

4 D > 4 B > 4 E > 4 E > E 990

MC and Reconstructed level Rapidity comparison

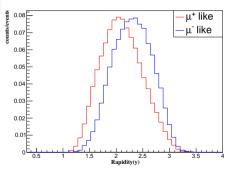


Fig: Rapidity distribution at MC level.

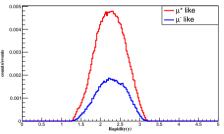


Fig:Rapidity distribution at reconstruction level .