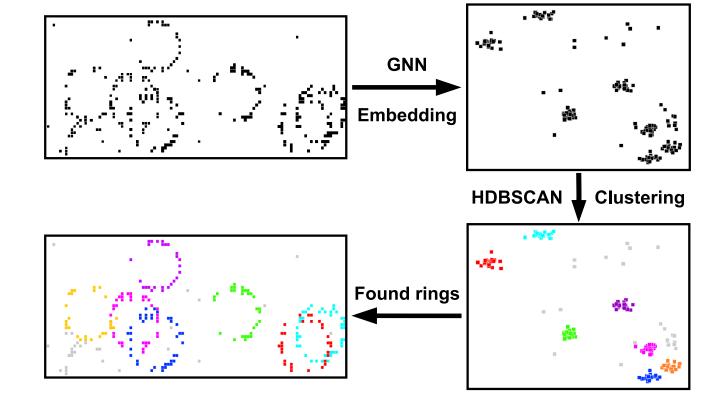
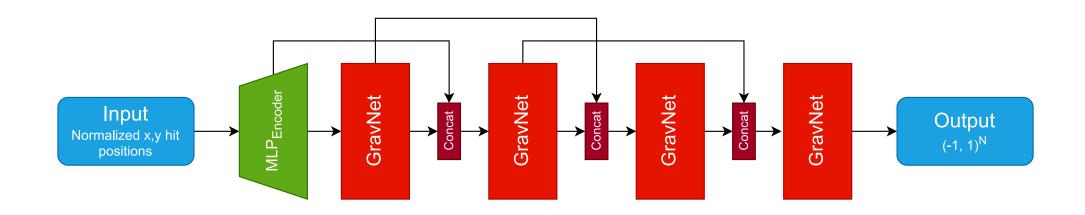
RICH software

46nd CBM Collaboration Meeting Martin Beyer


Table of contents

- 1. First look: GNN + HDBSCAN based ringfinder
- 2. RICH detector response for Cherenkov photons in simulation

1. First look: GNN + HDBSCAN based ringfinder


GNN + HDBSCAN reconstruction chain

- 1. Point cloud of Hits
 - → Embedding space via GNN
- 2. Clustering via HDBSCAN
 - → Reconstructed rings
- 3. Ellipse fitting in input space (not included in this work)

GNN: graph neural network

GNN with dynamic graph contruction using k-NN

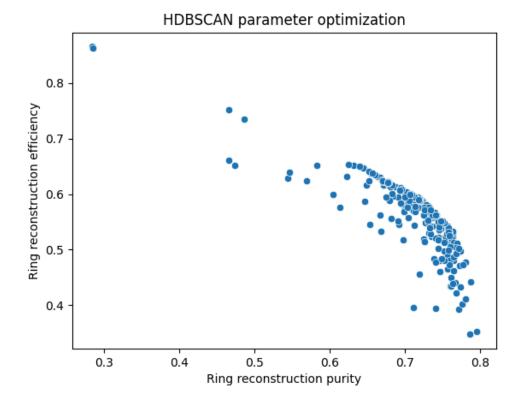
- **Input:** Normalized Hit positions $(x, y) \rightarrow$ encoder multilayer perceptron
- GravNet GNN layers (uses k-nearest neighbors) with dynamic edge construction
- Concatenate previous layer outputs via skip connections
- Output: N dimensional embedding space coordinates via tanh activation

GNN training for object seperation

Contrastive loss

[Attraction] Pull together Hits from the same object. [Repulsion] Push apart Hits from different objects.

→ Object separation in the embedding space

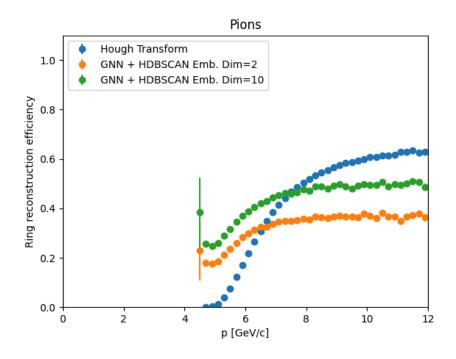

Training data

- GNN trained supervised on 50,000
 11AGeV Au+Au central events
- 1 PLUTO ρ^0 signal embedding in each event

$$egin{aligned} ext{Loss}_{ ext{Total}} &= ext{Loss}_{ ext{Att.}} = rac{1}{N_{objects}} \sum_{k \in objects} rac{1}{N_{hit \, pairs}} \sum_{i > j} d_{ij}^{\,\, 2(k)} \, e_{ij} \ ext{Loss}_{ ext{Rep.}} &= rac{1}{N_{non \, zero}} \sum_{i, \, j
otin noise \, hit} max (-\log(d_{ij}), 0)^2 \, (1-e_{ij}) \ e_{ij} &= egin{cases} 1 & ext{, hit i and j from the same object} \\ 0 & ext{, otherwise} \end{cases} \end{aligned}$$

HDBSCAN parameter optimization (embedding dim. 10)

- Crucial step to maximize ring reconstruction efficiency and purity
- Use of Bayesian optimization, minimizing
 Loss = - (log(Efficiency) + log(Purity))



CBM 11AGeV Au+Au central event (test data), embedding dim. 2

Ring reconstruction efficiency vs momentum

- Overall, not competitive yet compared with the Hough ringfinder
- Already looking promising for low-momenta rings, i.e. smeared rings and rings with fewer Hits (GNN + HDBSCAN only evaluated on 100k events due to performace bottleneck, Hough Transform on 600k events)

Overall performace summary

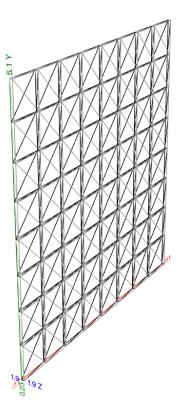
Setting	Primary electron efficiency	Primary electron efficiency < 0.5GeV/c	Primary electron efficiency < 1GeV/c	Pion efficiency	Purity	Latency (CPU ST) / event
HT baseline param. + ANN [default]	0.8565	0.2867	0.8058	0.2524	0.8570	650ms
HT optimiz. param. + BDT (afterburner)	0.8258	0.3931	0.7978	0.3582	0.8562	11ms
GNN + HDBSCAN (embedding dim. 2)	0.7196	0.5929	0.7433	0.2884	0.7290	15ms + 20ms
GNN + HDBSCAN (embedding dim. 10)	0.7864	0.6522	0.7966	0.3837	0.7288	15ms + 20ms

HT: Hough transform ringfinder

ST: CPU single thread

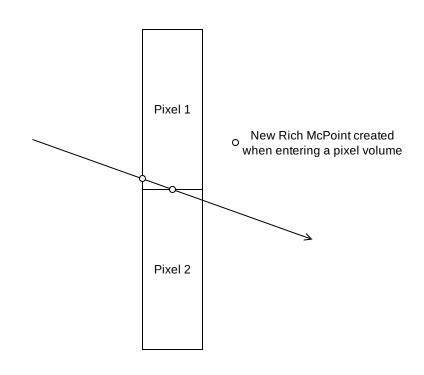
GNN ringfinder summary

- First GNN reconstuction chain running, including efficiency calculation (in python)
- Current results show little ring structure awareness (i.e. overlapping ring reconstruction), but already looking promising for (isolated) smeared & low Hit count structures
- Overall, not competitive yet compared with the Hough ringfinder


Outlook

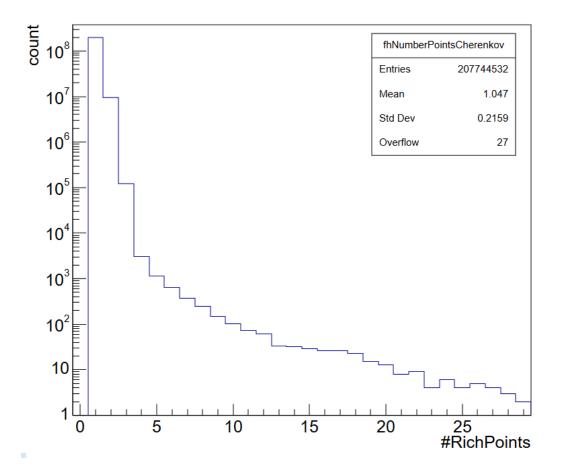
- Hit timestamps to be included
- Add auxiliary noise classification downsteam task
- Overall reconstruction chain improvements, i.e. GNN model, loss function, clustering ...
 Preliminary reconstruction chain → replacements and changes are very likely
- More QA, e.g. ring reconstruction efficiency vs. ring distance (overlapping rings)

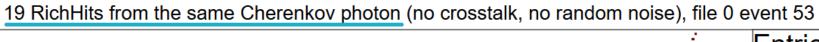
2. RICH detector response for Cherenkov photons in simulation

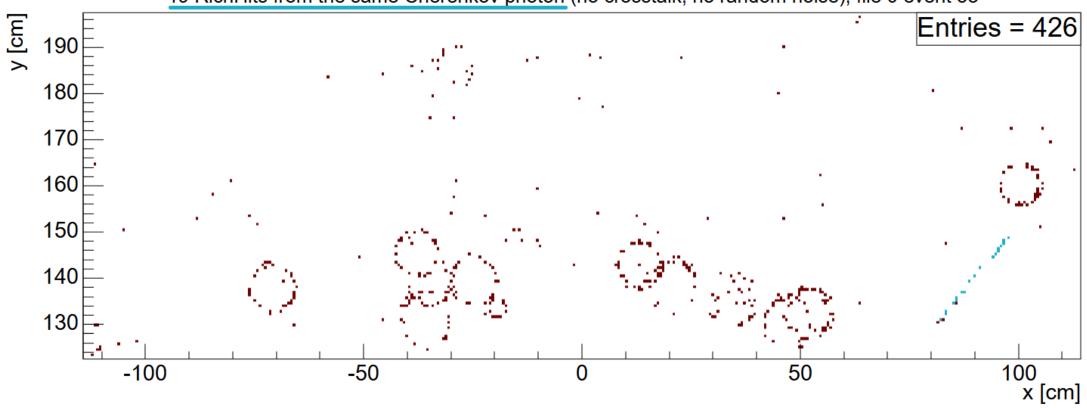

Hamamatsu MAPMT H12700

MAPMT geometry description via pixel volumes

Current response to Cherenkov photons in simulations

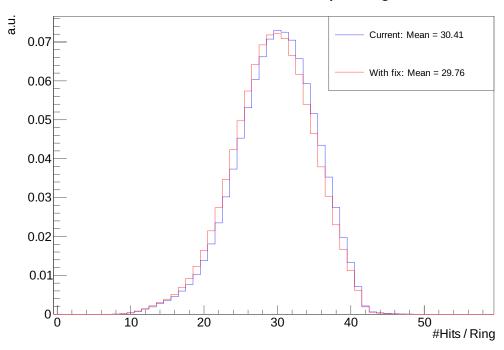

- RichPoints stored when Cherenkov photon
 entering MAPMT pixel volume
- Cherenkov photons are **not** stopped when entering MAPMT pixel volume
- One Cherenkov McTrack may cross and leave Rich McPoint's in multiple pixels!
- Response expected/we want:
 - Cherenkov photon always absorbed entering a volume
 - Rich McPoints only stored from the MAPMT front


Multiple RichPoints for same Cherenkov photon


Number of RichPoints in different pixels for same Cherenkov MC track

- 4,62% of Cherenkov photon
 McTracks leave multiple RichPoint's
- Some rare artefacts can also be seen, e.g. multiple Hits per photon & unusual Hit times (see backup)

Rare artefact



Change to number of Hits per ring (with fix)

- Working fix in transport step:
 - Always stop Cherenkov photons entering a MAPMT pixel volume
 - Only store Rich McPoints from the front side of the MAPMT (by checking normal of pixel surface)
- Reduction of mean Hits/ring by 0.65 (~2%) for primary electrons
- Removes artefacts
- Still under discussion how to solve it the best way, i.e. in geometry/materials definitions and/or transport/digitization

Number of RICH Hits per ring

100,000 BoxGenerator events of 5e+ 5e- each with $0 \text{GeV/c} < p_T < 3 \text{GeV/c}$ 2.5° < $\theta < 25.0^\circ$

RICH software summary & overview

- GNN based ringfinder [early stage, long term project]
- RICH Cherenkov photon response in simulation [finalizing]
- RICH offline QA (triggered by geant3→4) [in progress]
- RICH reconstruction port to cbm::algo [starting soon]
- Improving ring-track matching [in progress]

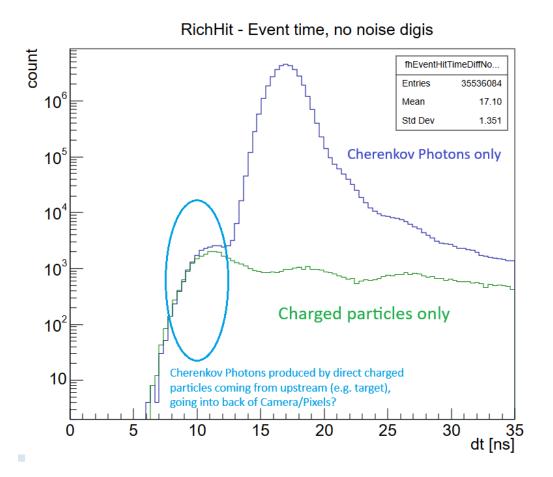
References / inspiration taken from:

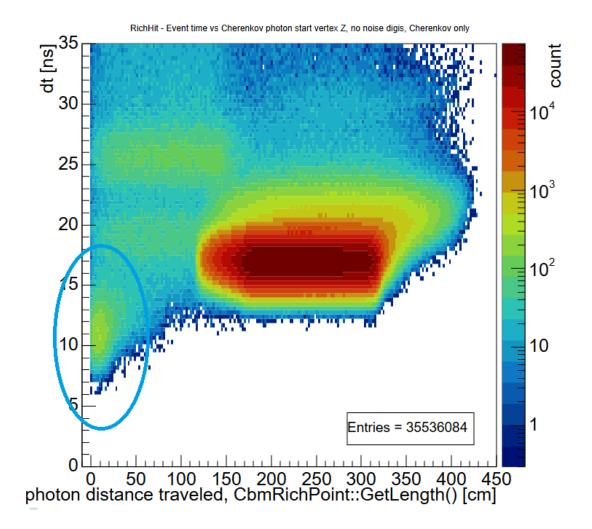
- EggNet: An Evolving Graph-based Graph Attention Network for Particle Track Reconstruction
- Object condensation: one-stage grid-free multi-object reconstruction in physics detectors, graph and image data
- End-to-End Multi-Track Reconstruction using Graph Neural Networks at Belle II

Backup

Datafiles used for GNN training/testing

UrQMD: "/lustre/cbm/prod/gen/urqmd/auau/12gev/centr/urqmd.auau.12gev.centr.*.root"


PLUTO: "/lustre/cbm/users/galatyuk/pluto/epem/12gev/*/*.root"


Efficiency calculation

Efficiency = #True reconstructed rings / #Accepted rings
Purity = #True reconstructed rings / #Reconstructed rings

Accepted ring: 7 hits from the same MC particle [same camera] True reco. ring: 70% of matched hits are from the same MC particle

More artefacts: RichHits times in event

