TRD STD / outer modules status

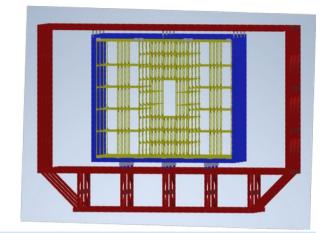
46th CBM week, CAS/IMP Lanzhou (PRC), 22nd October 2025

Philipp Kähler Institut für Kernphysik, Universität Münster, Germany

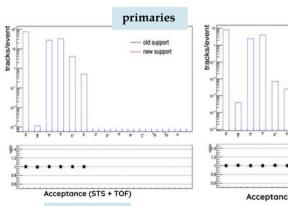
detector layer spacing

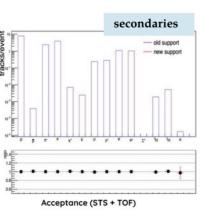
TRD production status

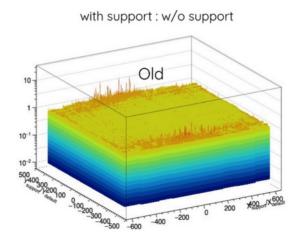
QA: new developments

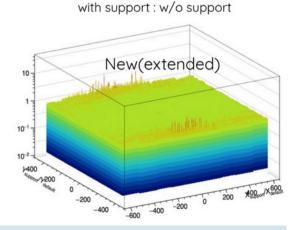

QA reporting

detector mainframe


TRD mainframe now generated in Root primitive solids reviewed & merged in MR302 (TRD v24c, full TRD) (cbmroot geometry) /MR302


inlcluded: additional *y* clearance, top & bottom of primary frame


- CPU time: 1.46 s/event with support, ("detector only" v20b: 1.23 s/event), only 18% increase
- comparative simulations conducted, full STS acceptance
- v24c (full TRD) set as new TRD default geometry, also v24d (CFV) available



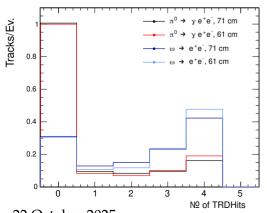
TRD frame with enlarged clearance, primary frame $> 25^{\circ}$

TOF hit distribution (no further systems affected)

TRD STD / outer modules status, 46th CBM week

Omveer

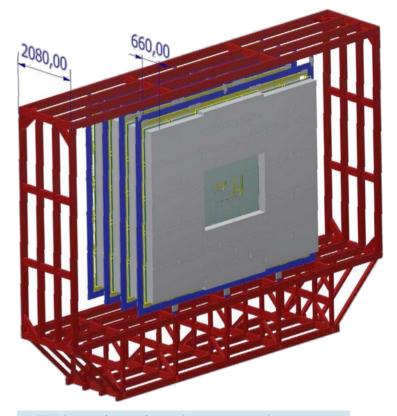
detector layer spacing


TRD production status

QA: new developments

QA reporting

TRD layer-to-layer distance


- reminder: TRD will consist of four equal layers, each layer of radiator (PE foam mats) and MWPCs
- full electron ID performance reached for electron hit in 4 layers
- current TRD design / TDR version optimised TR yield:
 30 cm radiator (+1.5 cm in entrance region)
 - with realistic detector design: current TRD geometries have layer repitition distance 71 cm
 - acceptance losses at large angles due to distance of rear layers
- <u>system optimisation</u> of radiator & layer spacing, compare these versions:
 - 71 cm layer repitition, 30 cm radiator (TDR, current geometries)
 - 66 cm layer repitition, 25 cm radiator ← appears preferrable
 - 61 cm layer repitition, 20 cm radiator

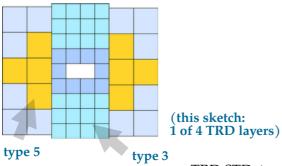
→ compact 66 cm geometry prepared, TRD v25a, MR324 to the geom. git

→ physics review ongoing, 1st positive feedback received

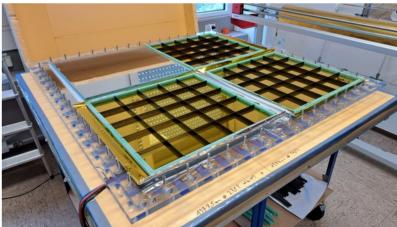
hits in TRD layers for electron tracks, different layer spacings

4 TRD layers, this rendering: layer repitition distance reduced to 66 cm (current default: 71 cm)

detector layer spacing

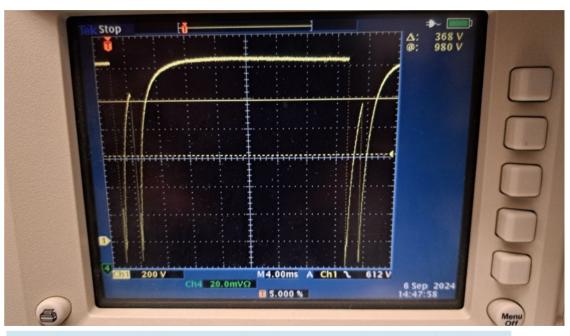

TRD production status

QA: new developments


QA reporting

TRD pre-production

- components for chamber type 5:
 - 32+3 chambers, 990 mm x 990 mm, 144 x 24 pads
 - production of backpanels (with cathode-pad plane):
 established full QA for electrical connections, cathode surface planarity,
 connectors
 - 35 backpanels finished
 - 35 entrance windows to be finished in next weeks
- components for chamber type 3:
 - 64+6 chambers, 570 mm x 570 mm, 80 x 8 pads
 - started with entrance window production
 - parallelisation in frame preparation and entrance foil stretching reached: 4 windows in 1 production step



reminder: wiring, observed trip behaviour

- both pre-series chambers (serial BP5-003 and BP5-004)
 - 7 out of 8 anode wire layer segments confirmed to nominal voltage + 10%
 - 1 segment trips at 1140...1200 V
 - "ignition": see scope picture, repetitive onset
- after trip (and completed onset): Ohmic resistance of $\sim 200 \Omega$
 - "removable" → disappearance ("burning")
 at ~ 6 V. 30 mA
 - switchable reproduced > 10 times with BP5-003

- during mCBM operation of the chambers, no further localisation achieved (as mounted FEE hinders)
- trip avoided with floating cathode padplane
 - in chamber BP5-004:
 identified one cathode pad as trip partner

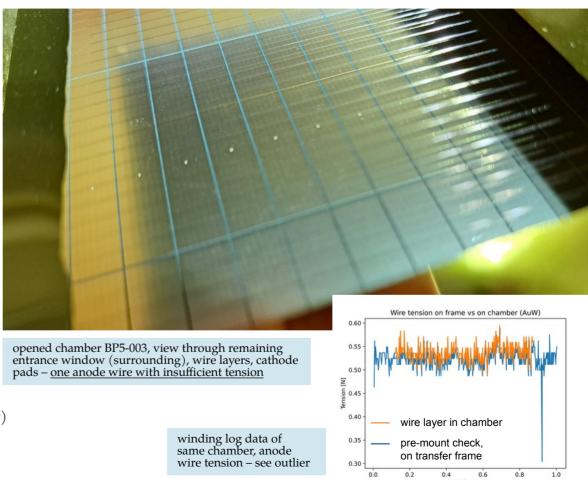
onset of trip, seen on chamber BP5-003, still in mCBM: trigger on breakdown of anode HV

trip/conductivity localisation

- in BP5-003 was possible to localise the connection (with chamber in conductive state) to exactly 1 cathode pad
 - 2nd pad "row" from left (<u>next-to border row</u>), 6th (of 9) pad group, close to centre-of-wire
- measured conductivity between anode segment and cathode pad: 157 Ω
- pad position is in about 54 cm distance from anode layer contact ledge (bottom in photo, this slide)
 - calculate resistivity of 54 cm anode wire:

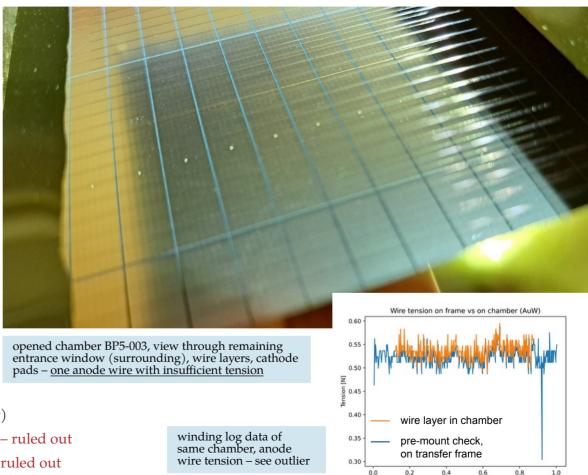
 $R = \rho \times A / 1$ $= 0.092 \Omega \text{ mm}^2/\text{m} \times 0.54 \text{ m} / 0.0003173 \text{ mm}^2$ $= 156.6 \Omega$

hypothesis: contact via anode wire

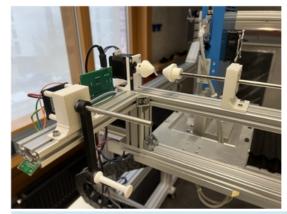

chamber in conductive state: contact localised exactly to 1 cath. pad, 2nd row, 1st of group

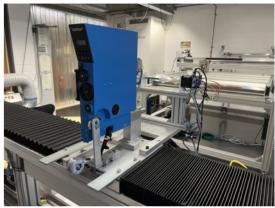
 157Ω

tripping/conductive: 1st anode wire layer segment

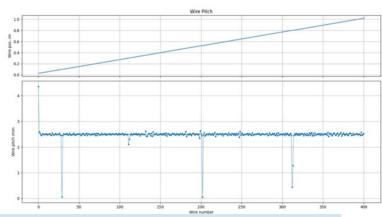

chamber opening & winding log enquiry

- **BP5-003** was opened by cutting the entrance window
- one anode wire found touching a cathode pad, while its ends appear properly glued in the wire ledge stacks
- new enquiry of wire tension measurement data in the winding log of this chamber production: insufficient tension already on winding (transfer) frame, routine failed to identify
- w.i.p.: inspect also chamber
 BP5-004 with same tripping behaviour
 would suit tension error still in backside/
 "sibling" of same wire winding run,
 but not yet found in tension measurement,
 should exclude wire-to-ledge glueing
- general, possible sources of insufficient tension:
 - in tension regulation during winding (*Meteor*)
 - in wire glueing on transfer frame (*Technicoll*)
 - in wire ledge glueing in chamber (*Araldite*)


chamber opening & winding log enquiry


- **BP5-003** was opened by cutting the entrance window
- one anode wire found touching a cathode pad, while its ends appear properly glued in the wire ledge stacks
- new enquiry of wire tension measurement data in the winding log of this chamber production: insufficient tension already on winding (transfer) frame, routine failed to identify
- w.i.p.: inspect also chamber
 BP5-004 with same tripping behaviour
 would suit tension error still in backside/
 "sibling" of same wire winding run,
 but not yet found in tension measurement,
 should exclude wire-to-ledge glueing
- general, possible sources of insufficient tension:
 - in tension regulation during winding (*Meteor*)
 - in wire glueing on transfer frame (Technicoll) ruled out
 - in wire ledge glueing in chamber (Araldite) ruled out

chamber wiring: stabilisations & restart

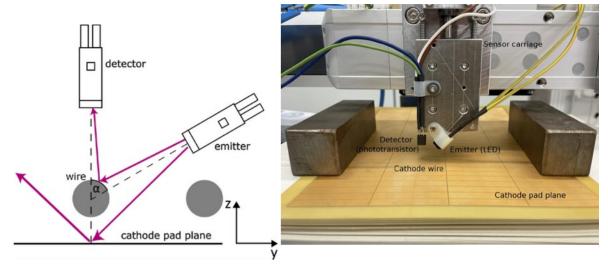

- full revision of *Meteor* wire tension device performed
 - breaking wheel exchanged
 - commissioned new active pre-tension regulation
 - next step: confirm calibration of tension meter
- rework of automated wire tension measurement device
 - modified sensor mounting to reach edges of wire layer also in 2nd run (wires in chamber)
- activated pitch control to ensure <u>every wire</u> is measured
- test winding of anode wire layer completed, expecting to resume wiring of chambers soon

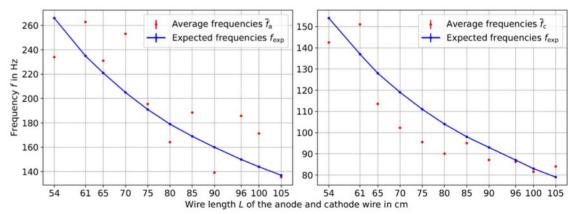
wire tension device: new active pre-tension regulation & Meteor revision

wire tension measurement: rework to reach edges in chamber and activated pitch evaluation

IKF team

detector layer spacing


TRD production status


QA: new developments

QA reporting

WIP: a new wire tension measurement

- automatised wire tension measurements for anode and cathode layers as inevitable check
- performed so far with well-established device,
 Gottschlag 2005, as used for all ALICE-TRD chambers
 - service demands increasing, replacement components partially unavailable
- started design of *up-to-date* tension measurement in collaboration with Bucharest/2D team
 - bus-based control
 - linear drive identified and purchased, confirmed reproduction precision $<10\;\mu\text{m}$
 - ADC identified
 - optical LED & phototransistor sensor setup being tested
- first promising results, oscillations measured, next step:
 - testing infrared laser diode instead of LED

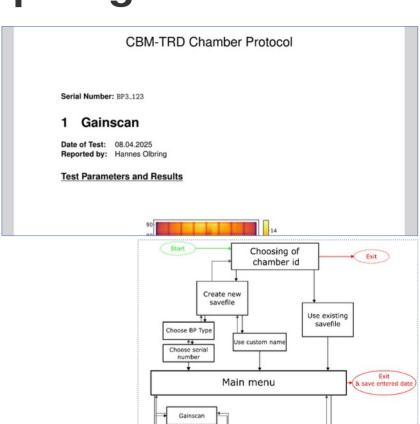
detector layer spacing

TRD production status

QA: new developments

QA reporting

22 October 2025


WIP: TRD chamber QA report generator

 Python-based programme to collect and store QA data of TRD chambers has been developed

(gsi-git)/trd/software-extra/trd-qa-reporting

- using blessed package as user interface
- held 1st internal review, aiming for longterm software stability
- structure: programme and data/report storage decoupled
- centralised generation of plots and QA report per chamber, current content:
 - gain scan
 - gas tightness / gas loss measurement
 - wire tension per wire (anode/cathode, pre/after layer install)
 - HV stability
 - ... observables can be added, backward compatibility
 - handover from test places via defined JSON format
- involving all 3 production places
 - to come: for data, considering separate git project / common cloud storage

Hannes

Wire Tension

HV Stability

Data entry

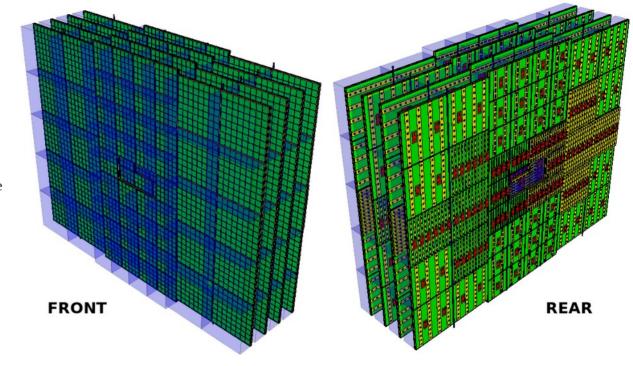
Create QA report

Enter missing data

summary

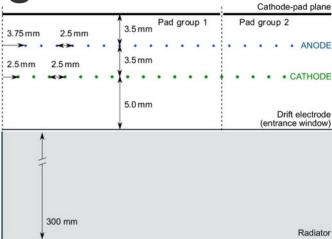
- TRD geometries v24c (full TRD) and v24d with TRD mainframe merged
 - set as TRD default geometries
 - enlarged *y* clearance reached
- suggesting compact TRD layer spacing "66 cm"
 - comparative simulations conducted
 - technical review concluded, 1st positive comments in physics review
 - MRs to the geom. git set, aiming for November tests
- TRD chamber production
 - type 5 readout backpanels finished, windows finishing soon
 - type 3 window production started, improved parallelisation
 - wiring of chambers: issues identified, tools and routines reworked, restarting now
- chamber production QA processes
 - successor device for automatised wire tension measurement in development
 - new TRD QA report generator software being commissioned

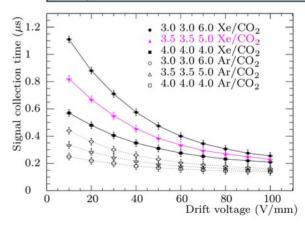
last slide ↑


backup \

TRD in CBM

- 216 MWPCs & radiator
- 6.25 m x 5.15 m max. width/height
- alternating x- and y-layers (90° rotation)
- read-out at the segmented cathode plane
- 2D inner zone, triangular cathode pads
- 4.1 m behind centre-of-magnetic field
 - $1.15 < \eta < 3.65$ pseudo-rapidity coverage


PURPOSE


- electron identification above 1 GeV
 - design value: π supp. > 20 @90% e⁻ eff.
- intermediate tracker, 300 μm pos. res.
- hadron identification via dE/dx
- FPGA extraction: charge and time after CRI layer

- up to 100 kHz particle rate at 10 MHz interaction rate
- operated with Xe/CO₂ 85:15, 0 ... 0.7 mbar (relative)
- thin *Kapton* entrance window (TR transmission)
- symmetrical amplification plus drift
- 3.5+3.5 / 5 mm: optimisation, rate capabilities vs. TR absorption
- pad width: 6.7 mm (PRF ~ 10/80/10)
- gain 2000, short signal collection time $\rightarrow U_{anode} = 1850 \text{ V}, U_{drift} = -500 \text{ V}$

• Andronic et al.: *A comprehensive study of rate capability in Multi-Wire Proportional Chambers*, arXiv:0909.0242

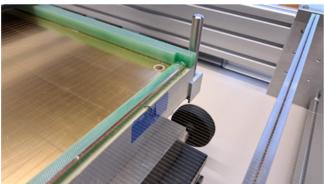
Cathode-pad plane

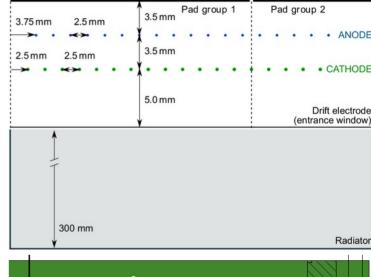
TRD HV geometry

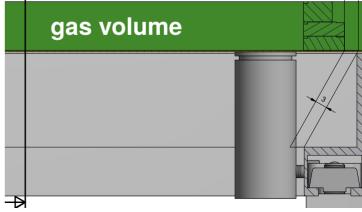
• wire spacing 2.5 mm (anode & drift layer)

• amplification region 3.5 mm x 2 (symmetrical)

drift region 5.0 mm

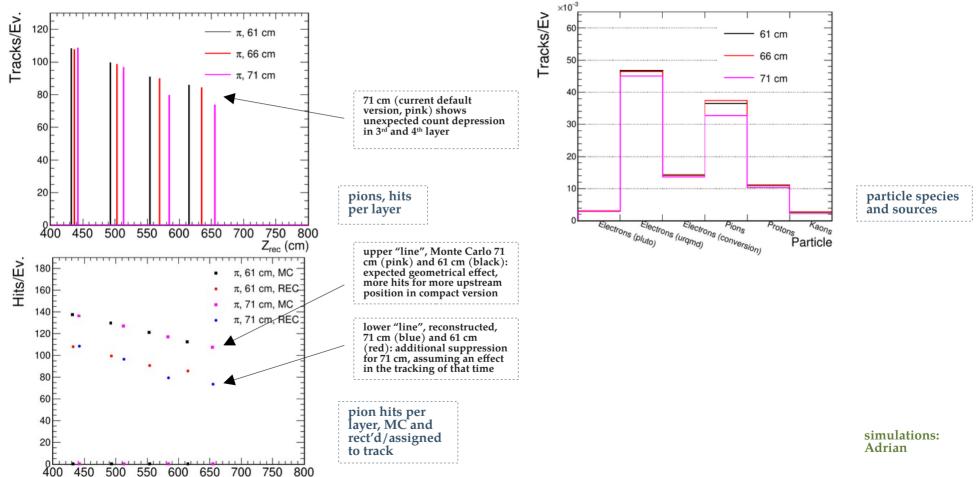

• wire diameters 20 μm anode (+ 75 μm outermost)


 $75 \, \mu m$ cathode

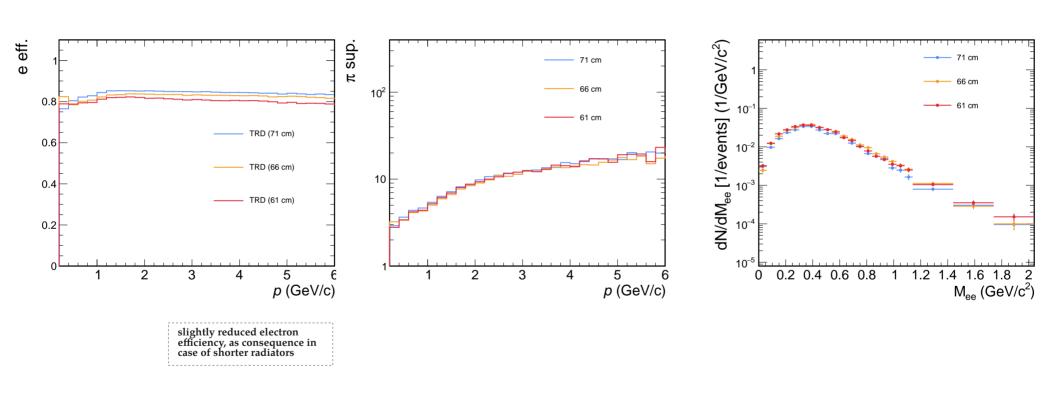

• wire tension 45 ... 50 cN anode

100 ... 110 cN cathode

nominal voltages \sim 1800 V anode for gain 2000...3000 (Xe/CO₂ 85:15) \sim 100 V/mm drift for < 300 ns signal collection time



anode layer is electrically split into 8 segments

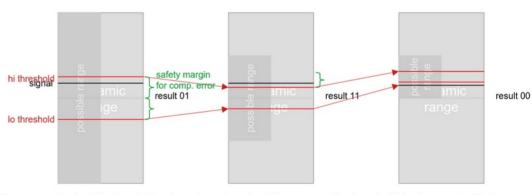

layer spacing, di-electrons, hit counts

TRD STD / outer modules status, 46th CBM week

Z (cm)

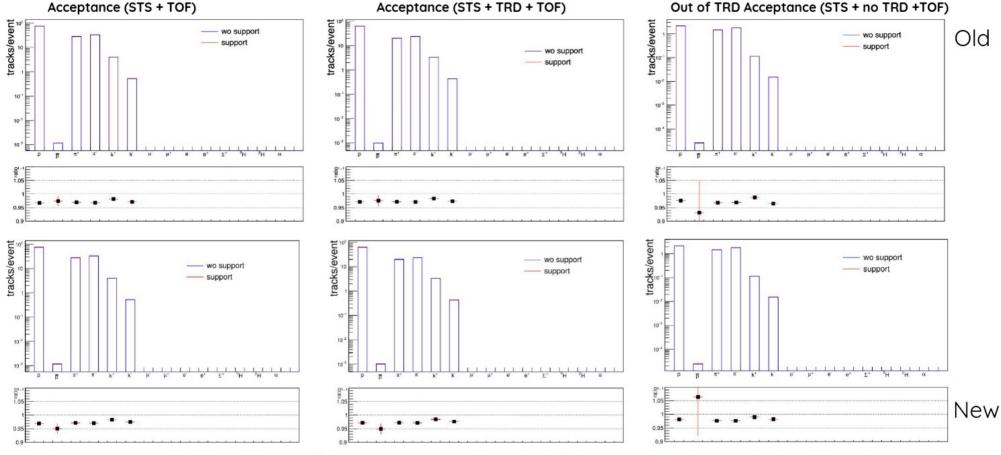
layer spacing, electron efficiency & π supp.

simulations: Adrian


SPADIC version 3.1

- current version: SPADIC 2.2, working in mCBM
 - hit to track residuals down to ~300 μm shown
 - few channels of each chip with unsatisfying ADC working point ("line effects")
 - internal ref. level generation
- SPADIC 3.1 submitted and received
 - dies in delivery, test setup available at ZITI
 - tests to be started
- design based on redundant successive approximation ADC
- -> 6.25 ns are available per conversion step:

CLK ->


- Logic sends new DAC values
- DACs logics decode values
- DACs generates output voltages
- Comparators compare
- Results are sent to logic
- Logic calculates next DAC values
 -> CLK

6.25 ns

If we cannot adjust the input signal, we have to <u>adjust the comparator threshold</u> for the same effect. The possible range is halved in each step. The thresholds are at % and % of this range.

Particle composition of reconstructed primary tracks

In all scenarios, up to 4% of primary tracks are reduced as a consequence of the TRD support structure.