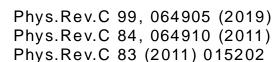
Physics of High net-baryon Densities - PHD 2025

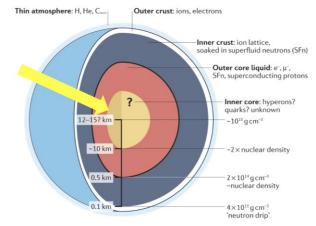
Recent Femtoscopy Correlation Measurement in Heavy-ion Collisions at RHIC-STAR

Xiaofeng Luo
Central China Normal University

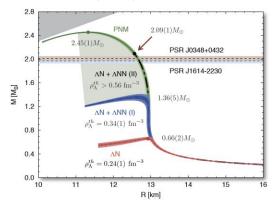
April 14th, 2025

Outline


- > Introduction
- Results: Baryon-Baryon and Two-Pion Femtoscopy
 - 1) Au+Au 3 GeV : p-p,p-d,d-d, d-Λ, t-Λ, ³He-Λ, Λ-Λ
 - 2) Isobar 200 GeV : p-Ξ⁻, p-Ω⁻
 - 3) FXT energies: Two-pion femtoscopy and Third-body Coulomb Effect
- Summary and Outlook

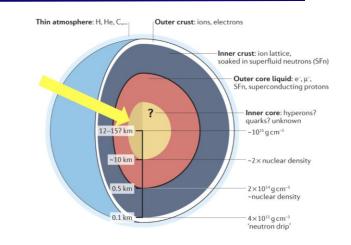


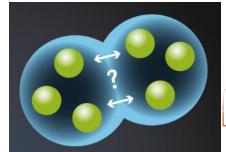
Nucleon (N) - Hyperon (Y) Interactions


Understand the hadron interactions and search for exotic hadrons:

1) Role of N-N, Y-N, Y-Y interactions in Equation-of-State at high baryon density

PRL114, 092301(2015), HYP2018, 1512.06832

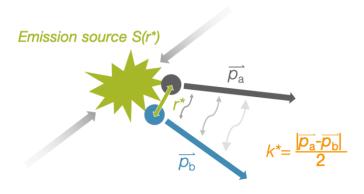

Nucleon (N) - Hyperon (Y) Interactions


Understand the hadron interactions and search for exotic hadrons:

- 1) Role of N-N, Y-N, Y-Y interactions in Equation-of-State at high baryon density
- 2) Strange Dibaryons : not found experimentally before Possible bound state:

H-dibaryon $\Rightarrow \Lambda + \Lambda / p + \Xi^-$ (Strange)Dibaryon $\Rightarrow p + \Omega$

Phys.Rev.C 99, 064905 (2019) Phys.Rev.C 84, 064910 (2011) Phys.Rev.C 83 (2011) 015202



Particle	Mass
	(MeV)
f_0	980
a_0	980
 K(1460)	1460
$\Lambda(1405)$	1405
$\Theta^{+}(1530)$	1530
Н	2245
$N\Omega$	2573

Xiaofeng Luo

Observable : Femtoscopy

⇒ Femtoscopy is inspired by Hanbury Brown and Twiss (HBT) interferometry.

- → Spatial and temporal extent of emission source
- → Final-state Interactions (Coulomb, Strong interaction)
- → Bound state

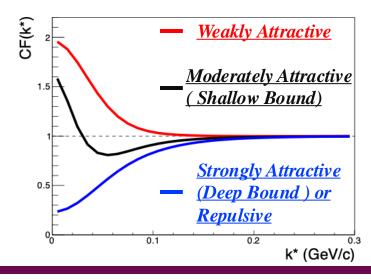
Two-particle correlation function:

Model

<u>Experimental</u>

$$C(k^*) = \int S(\vec{r}) |\Psi(\vec{k}^*, \vec{r})|^2 d^3 \vec{r} = \frac{N_{same}(k^*)}{N_{mixed}(k^*)}$$

 $S(\vec{r})$: Source function

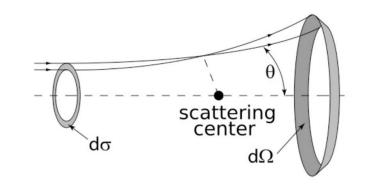

 $\Psi(\vec{k}^*, \vec{r})$: Pair wave function

 $k^* = \frac{1}{2} |\vec{p}_a - \vec{p}_b|$, relative momentum

 \vec{r} : relative distance

R. Lednicky, et al. Sov.J.Nucl.Phys.35(1982)770

L. Michael, et al. Ann. Rev. Nucl. Part. Sci. 55 (2005) 357-402


Effective Range Expansion in Low Energy Scatterings

1) Schrodinger equation:

$$\left[-rac{\hbar^2}{2m}
abla^2+V(r)
ight]\psi({f r})=E\psi({f r}),$$

2) Two particle scattering wave function $(r \rightarrow \infty)$:

$$\psi_{
m rel}({f r})pprox e^{i{f k}\cdot{f r}}+f(heta,\phi)rac{e^{ikr}}{r},$$

H. A. Bethe, Phy. Rev. 76 (1949) 38

3) scattering amplitude:

$$k\cot\delta_0=-rac{1}{a}+rac{1}{2}r_0k^2+\mathcal{O}(k^4),$$

$$f(heta) = \sum_{l=0}^{\infty} rac{(2l+1)}{k} e^{i\delta_l} \sin \delta_l P_l(\cos heta).$$

$$f^S(k^*)$$
 s wave (L=0)

$$f^{S}(k^{*}) = \left(\frac{1}{f_{0}^{S}} + \frac{1}{2}d_{0}^{S}k^{*2} - ik^{*}\right)^{-1}$$

 $\delta(k)$: phase shift a: Fermi scattering length at zero energy r_0 : effective range

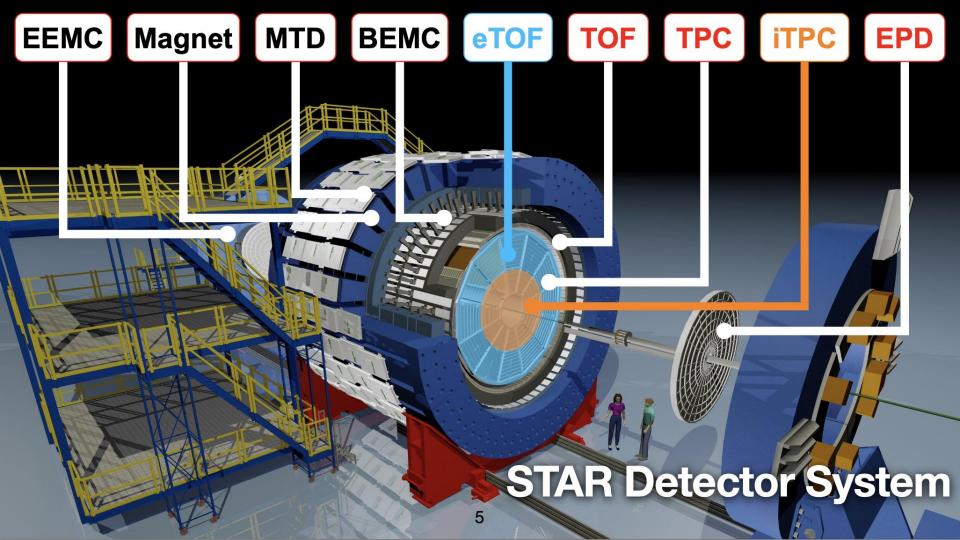
$$\lim_{k o 0} \sigma_e = 4\pi a^2$$

notation change: $-a \rightarrow f_0 \quad r_0 \rightarrow d_0$

Lednicky-Lyuboshitz Approach for Particle Correlations

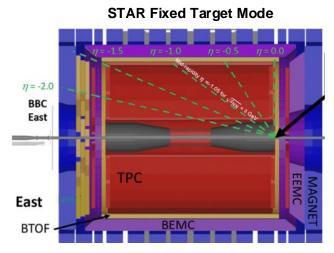
Gaussian source approximation: $S(\mathbf{r}^*) = (2\sqrt{\pi}R_G)^{-3}e^{-\mathbf{r}^{*2}/4R_G^2}$

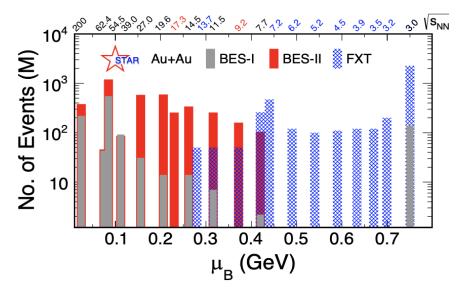
$$C(\mathbf{k}^*) = \int d\mathbf{r}^* \ S(\mathbf{r}^*) \ |\Psi(\mathbf{r}^*, \mathbf{k}^*)|^2$$


$$= 1 + \frac{|f(k^*)|^2}{2R_G^2} F(d_0) + \frac{2\mathbf{Re}f(k^*)}{\sqrt{\pi}R_G} F_1(2k^*R_G) - \frac{\mathbf{Im}f(k^*)}{R_G} F_2(2k^*R_G)$$

Assumptions:

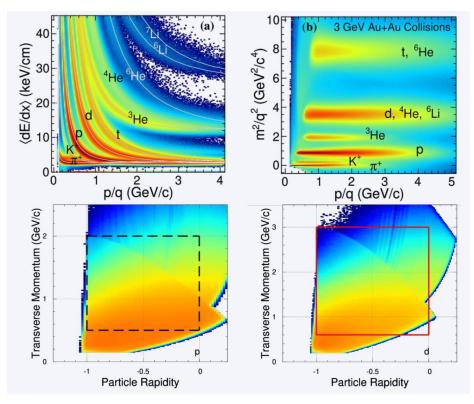
- factorization between source and strong interaction
- effective range expansion for wave function scattering length f_0 , effective range d_0


$$F_1(z) = \frac{e^{-z^2}}{z} \int_0^z e^{x^2} dx$$
$$F_2(z) = \frac{1}{z} (1 - e^{-z^2})$$


R.Lednicky, V.L.Lyuboshitz, 1981

RHIC Beam Energy Scan (BES) Program (2010-2021)

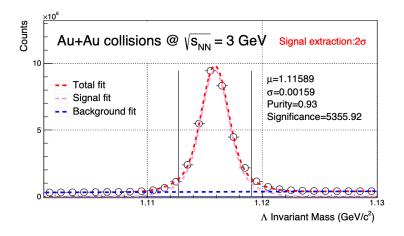
- ➤ BES-I (2010 2014): 7.7, 11.5, 14.5, 19.6, 27, 39, 62.4 GeV.
- ➤ BES-II (2018-2021): Collider mode (7.7, 9.2, 11.5, 14.6, 17.3, 19.6, 27 GeV), FXT mode: (3.0, 3.2, 3.5, 3.9, 4.5, ..., 13.7 GeV)
- \triangleright μ_B coverage : 25 < μ_B < 750 MeV



200 GeV Data sets:

Center-of-Mass Energy	Collisions	Year	Mode	#Events
200 GeV	Au+Au	2011/2014/2016	Collider	~ 2 Billion
200 GeV	Isobar (Ru+Ru/ Zr+Zr)	2018	Collider	~4 Billion

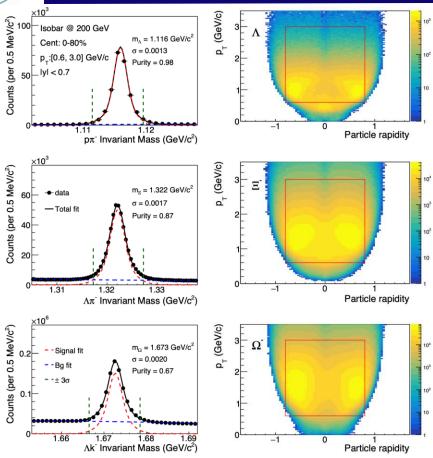
Particle Identification & Reconstruction



⇒ protons and deuterons are identified by TPC, TOF

• Low p_T : TPC

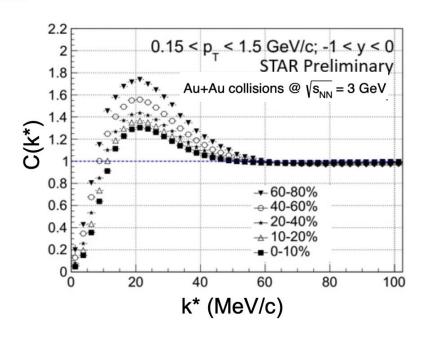
• High p_T : TPC + TOF

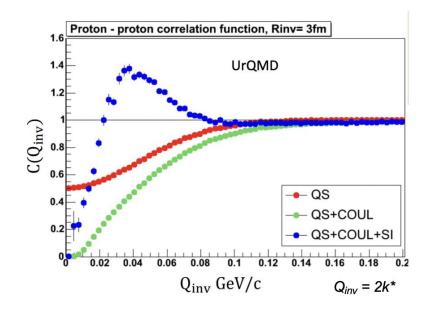

• **Purity** > 95%

STAR, Phys. Lett. B 827 (2022) 136941

Particle Identification & Reconstruction

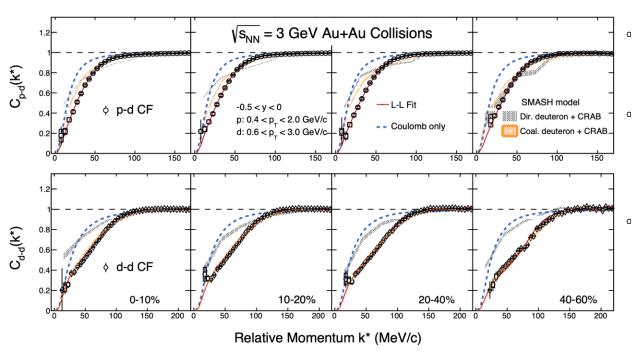
- ⇒ protons and deuterons are identified by TPC, TOF
 - Low p_T : TPC
 - **High** p_T : **TPC** + **TOF**
 - **Purity** > 95%
- \Rightarrow Reconstruct hyperons (Λ, Ξ, Ω)


$$\Lambda -> p + \pi^-, BR = 63.9\%$$


$$\Xi^- < \Lambda + \pi^-, BR = 99.9\%$$

$$\Omega^{-} < \Lambda + K^{-}, BR = 67.8\%$$

Proton - Proton Interactions at 3 GeV

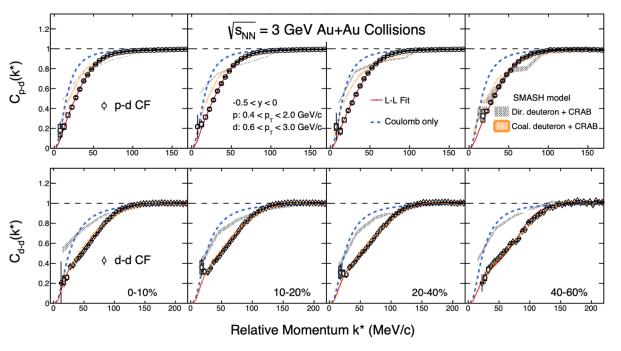


- 1) Repulsion at small k* due to Coulomb and quantum statistics
- 2) Attractive strong interaction with fo ~ 7 fm (low-E scattering) consistent with data
- 3) Bayesian fit to extract source size and scattering parameters simultaneously

p-d / d-d Correlation @ 3 GeV

- First measurements of p-d/d-d correlation functions in HIC
- Clear depletion in low k*
- Coulomb repulsive & strong interaction
- Fitted with L-L model simultaneously, assuming in different centrality:
- Different R_G
- Common f_0 and d_0

STAR: Phys. Lett. B (2025) 139412

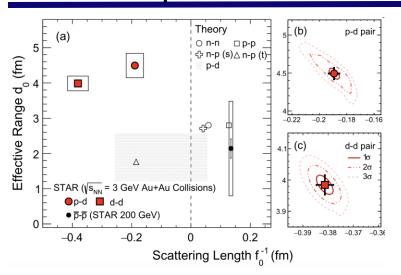

SMASH: J. Weil et al. Phys.Rev.C 94 (2016) 5, 054905

Coalescence: W.Zhao et al. Phys. Rev. C.98 (2018) 5,054905

p-d / d-d Correlation @ 3 GeV

Simulated with SMASH model, consider two deuteron formation mechanism:

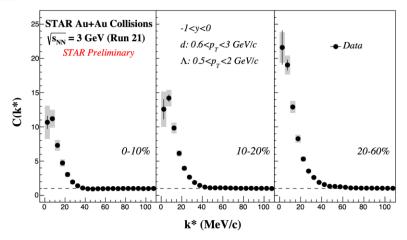
- Direct production
 - Hadronic scattering
 - Fail to describe data at certain k*
- Coalescence production
 - Wigner function
 - Well description to data
 - Coalescence is the dominant process for deuteron formation in the high-energy nuclear collisions

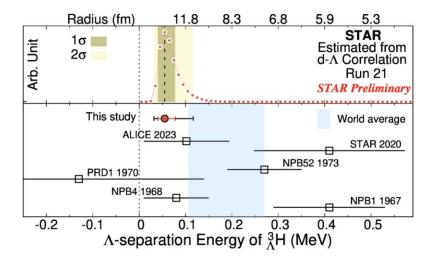

STAR: Phys. Lett. B (2025) 139412

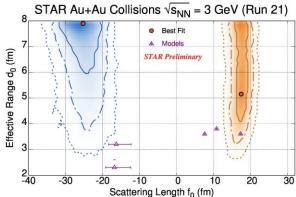
SMASH: J. Weil et al. Phys.Rev.C 94 (2016) 5, 054905

Coalescence: W.Zhao et al. Phys. Rev. C.98 (2018) 5,054905

p-d / d-d Correlation @ 3 GeV




- 1) For both p-d and d-d interaction, the spin-averaged f0 is negative
- 2) No collision centrality dependence is observed in f0 and d0.

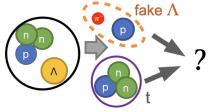

<i>p-d</i> pair					
Parameters (fm)	Fit C_{pd} (0-10%)	Fit C_{pd} (10-20%)	Fit C_{pd} (20-40%)	Fit C_{pd} (40-60%)	Simu. Fit
$egin{aligned} f_0 \ d_0 \end{aligned}$	-5.45 ± 0.31 4.30 ± 0.15	-5.04 ± 0.25 4.51 ± 0.15	-5.53 ± 0.25 4.46 ± 0.16	-5.14 ± 0.24 4.48 ± 0.21	-5.28 ± 0.13 -4.49 ± 0.08
d-d pair					
Parameters (fm)	Fit C_{dd} (0-10%)	Fit C_{dd} (10-20%)	Fit C _{dd} (20-40%)	Fit <i>C</i> _{dd} (40-60%)	Simu. Fit
f_0 d_0	-2.74 ± 0.04 3.88 ± 0.08	-2.58 ± 0.04 3.67 ± 0.06	-2.57 ± 0.03 3.98 ± 0.04	-2.63 ± 0.05 3.90 ± 0.08	-2.62 ± 0.0 -3.99 ± 0.0

$d-\Lambda$ Correlation functions at 3.0 GeV (Run21)

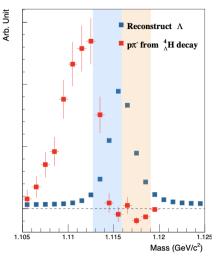
1) The most accurate results of binding energy and radius of $^{3}_{\Lambda}$ Open a new way to constrain $^{3}_{\Lambda}$ H properties.

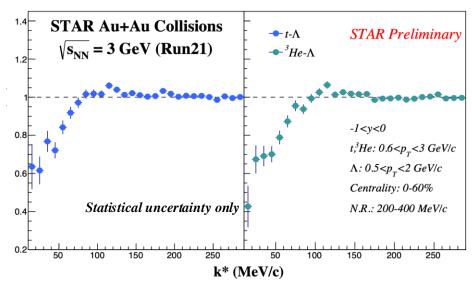
$$^{3}_{\Lambda} \text{H} \, B_{\Lambda} = 0.06^{+0.06}_{-0.03} \, \text{(MeV)} \, @ \, 95\% \, \text{CL}$$

Extracted physical parameters:


$$f_0$$
 (D) = -25.3±3.3 fm f_0 (Q) = 17.5±1.6 fm

Xialei Jiang's talk@QM2025

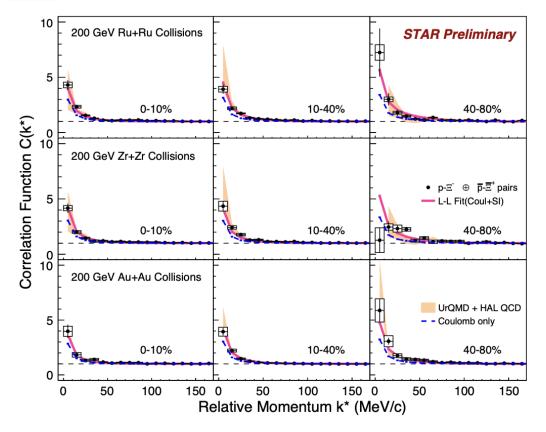



$t-\Lambda$ and

$^3He-\Lambda$ Correlation Functions at 3.0 GeV (Run21)

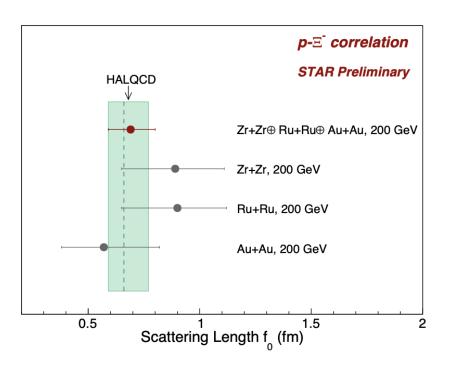
$$^{4}_{\Lambda} H -> t + p + \pi^{-}$$
 $^{4}_{\Lambda} He -> ^{3}He + p + \pi^{-}$
Left signal: 1.11271~1.11589 GeV/ c^{2}
Right signal: 1.11589~1.11906 GeV/ c^{2}

The correlation functions of right side Λ invariant mass region are displayed.


- 1) First $t-\Lambda$ and $^3{\rm He}-\Lambda$ correlation measurements in the heavy-ion collisions. $t-\Lambda$ and $^3{\rm He}-\Lambda$ exhibit similar correlation structures.
- 2) Structure seen in k* ~120 MeV for both t $-\Lambda$ and $^3{\rm He}-\Lambda$ correlation.
 - Particle decay?
 - Final-state interaction?

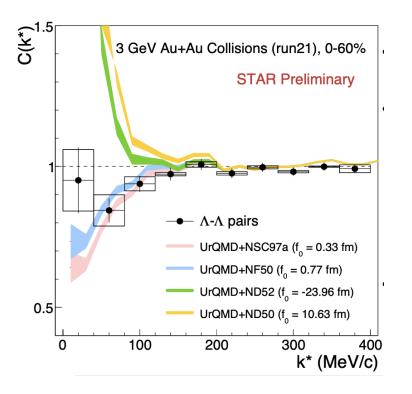
Xialei Jiang's talk@QM2025

$p-\Xi^-$ Correlation Function (|S| =2)


- I. Measure p-Ξ⁻ ⊕ p̄-Ξ̄⁺ CFs at 200
 GeV in Au+Au and Isobar collisions
- II. CFs show enhancement at low k*
- III. Simultaneously fit with L-L function for different centralities in each collision system to extract R_G , f_0 and d_0 by Bayesian method
- IV. UrQMD + HAL QCD model is consistent with data
 - Particle phase space provided by UrQMD
 - Interaction potential provided by HAL QCD

Y. Kamiya, et al., Phys. Rev. C 105, 014915 (2022)

$p-E^-$ Interaction Parameters (|S| = 2)



- I. Simultaneously fit with L-L function for different centralities in each collision system to extract R_G , f_0 and d_0 by Bayesian method
- II. First experimental constraints of strong interaction parameters in p-Ξ⁻ pairs in heavy-ion collisions
- III. Extracted spin averaged scattering length: $f_0 = 0.69^{+0.11}_{-0.10}$ fm (stat.+sys.)
 - Weakly attractive interaction
 - Consistent with HAL QCD prediction

Y. Kamiya, et al., Phys. Rev. C 105, 014915 (2022)

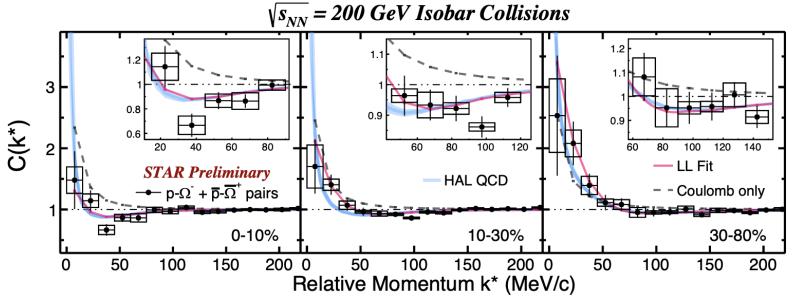
$\Lambda - \Lambda$ (|S|=2) Correlation Functions at 3 GeV (Run 21)

- 1) Λ - Λ correlation function shows suppression at small k*. Compared with UrQMD+potential, it is found that the simulation with positive f0 is in better agreement with data -> Hints at an attractive interaction in Λ - Λ pairs.
- 2) Need more precise data to confirm.
- -> High statistics Isobar and Au+Au collisions

Potential	f0 (fm)	d0 (fm)	Chi2/NDF
NSC97a [5]	0.33	12.37	1.53
NF50 [6]	0.77	4.27	1.61
ND52 [7]	-23.96	2.59	2.24
ND50 [7]	10.63	2.04	4.02

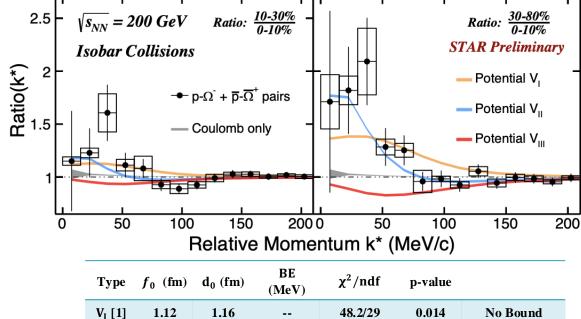
Ke Mi's poster@QM2025

^[5] P. M. M. Maessen, et al, Phys. Rev. C 40 (1989) 2226


^[6] M. M. Nagels, et al, Phys. Rev. D 20 (1979) 1633

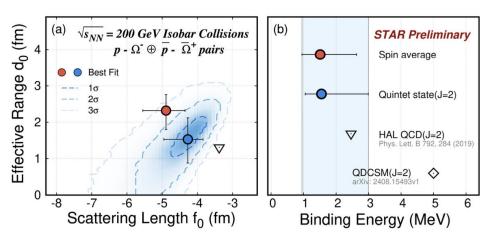
^[7] M. M. Nagels, et al, Phys. Rev. D 15 (1997) 2547

$p-\Omega^-$ Correlation Function (|S|=3)


- I. Precise measurements of $p-\Omega^- \oplus \bar{p}-\bar{\Omega}^+$ correlation functions in Isobar collisions
 - □ CFs show enhancement at low k* -> mainly due to Coulomb attraction interaction
 - \blacksquare CFs show depletion at k* ~ 30-150 MeV/c -> mainly due to the strong interaction
- II. Simultaneously fit with L-L function for 3 centralities to extract R_G , f_0 and d_0 by Bayesian method
- III. CFs obtained by HAL QCD theory with extracted $R_{\rm G}$ by L-L model is consistent with the data

Takumi Iritani, et al. (HAL QCD), Phys. Lett. B792 (2019)

$p-\Omega^-$ CF Ratio (|S|=3)



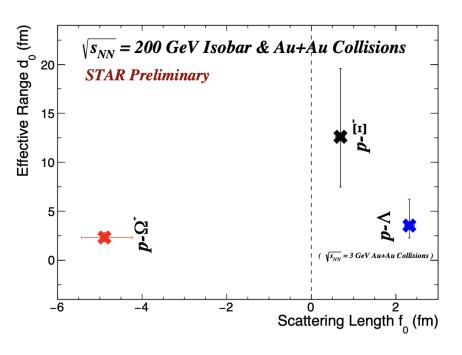
- I. By taking CF ratio, Coulomb effect can be largely canceled
- II. CF Ratio shows enhancement at low k* and depletion around k* ~ 100MeV/c
 - Due to the presence of shallow bound state
- III. The potential $V_{\rm II}$, with a p-value of 0.812, provides a better description of the data
 - [1] Kenji Morita, et al., Phys. Rev. C 94, 031901 (2016)
 - [2] Kenji Morita, et al., Phys. Rev. C 101, 015201 (2020)

$p-\Omega^{-}$ Interaction Parameters (|S|=3)

	Spin ave.	Quintet	HAL QCD
f_0 (fm)	$-4.89^{+0.54}_{-0.66}$	$-4.27^{+0.43}_{-0.68}$	-3.38
d ₀ (fm)	$2.32^{+0.44}_{-0.52}$	$1.53^{+0.54}_{-0.66}$	1.31
BE (MeV)	$1.51^{+1.12}_{-0.56}$	$1.55^{+1.44}_{-0.50}$	2.27

Kenji Morita, et al., Phys. Rev. C 101, 015201 (2020)

- I. First experimental constraints in heavy-ion collisions of strong interaction parameters in $p-\Omega^-$ pair
- II. Extracted negative f_0 ($|f_0| > 2d_0$) by Spin average method and Quintet method
 - ☐ First experimental evidence of Strange Dibaryon
- III. Calculate Binding Energy (BE) via Betha formula:


Reduced mass:
$$m_{p\Omega}=\frac{m_p m_\Omega}{m_p+m_\Omega}$$

$$BE_{p\Omega}=\frac{1}{2m_{p\Omega}d_0^2}\left(1-\sqrt{1+\frac{2d_0}{f_0}}\right)^2$$

□ Calculated BE are consistent with HAL QCD prediction

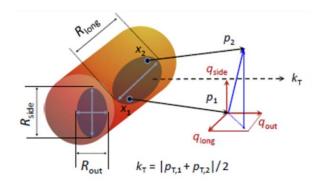
Kehao Zhang's talk@QM2025

Strong Interaction Parameters

- Extracted negative f_0 in p- Ω^- pair -> Support the formation of bound state
- □ Interaction section is proportional to f_0^2 , the observation implies that the strength of the interaction depends on strangeness;

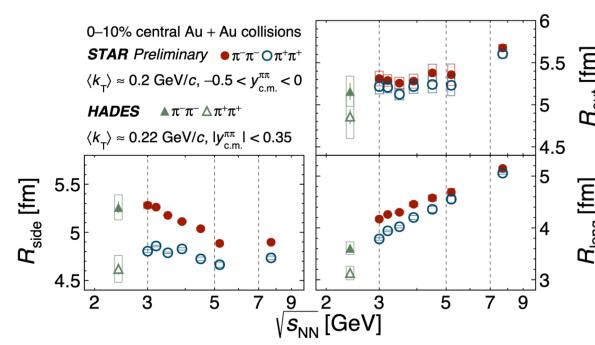

Hierarchy of strangeness content:

$$f_0(|s|=0) > f_0(|s|=1) > f_0(|s|=2) > 0$$


How to understand this Hierarchy?

Two-Pion 3D Femtoscopy: Energy dependence of Radii

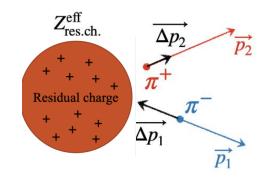
- $R_{\mathrm{out}}^{\pi^+\pi^+}$ and $R_{\mathrm{out}}^{\pi^-\pi^-}$ agree within uncertainties
- Difference between $\pi^+\pi^+$ and $\pi^-\pi^-$ decreases with increasing $\sqrt{s_{\mathrm{NN}}}$ for R_{side} and R_{long}



HADES, EPJA 56, 140 (2020)

Vinh's talk, Youquan Qi's poster@QM2025

Two-Pion 3D Femtoscopy: Energy dependence of Radii

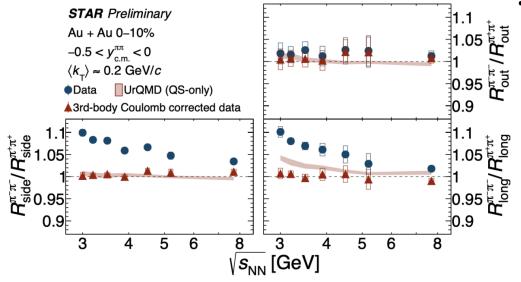


HADES, EPJA 56, 140 (2020)

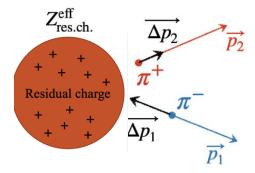
Vinh's talk, Youquan Qi's poster@QM2025

Two possible reasons:

1) Third Body Coulomb



2) Isospin effect


$$\begin{array}{ll} p+p \leftrightarrow n+\Delta^{++}, & \Delta^{++} \leftrightarrow p+\pi^{+} \\ n+n \leftrightarrow p+\Delta^{-}, & \Delta^{-} \leftrightarrow n+\pi^{-} \\ n+p \leftrightarrow n+\Delta^{+}, & \Delta^{+} \leftrightarrow n+\pi^{+} \\ n+p \leftrightarrow p+\Delta^{0}, & \Delta^{0} \leftrightarrow p+\pi^{-} \end{array}$$

Remove Third body Coulomb interactions

- Isolate 3rd body Coulomb effect:
 - Extract Z_{res}^{eff} from $\pi + /\pi yield$ ratio,
 - Calculate Δp needed to produce the 3rd body Coulomb effect in UrQMD
 - Get correlation functions with the momentum shift

Correlation functions consistent after removal of 3rd body Coulomb effect No significant isospin contribution seen.

Summary and Outlook

Light Nuclei – Λ Interactions :

- 1) First $t \Lambda$ and $^3{\rm He} \Lambda$ correlation measurements in the heavy-ion collisions
- 2) d $-\Lambda$: most accurate results of binding energy and radius of $^3_{\Lambda}{\rm H.}$

Open a new way to constrain hypernuclei properties

Proton – Hyperon Interactions :

- 1) $\mathbf{p} \mathbf{\Xi}^- \oplus \mathbf{\bar{p}} \mathbf{\Xi}^+$ pairs: $f_0 > 0$ -> Weakly attractive interaction
- 2) \mathbf{p} - $\mathbf{\Omega}^- \oplus \mathbf{\bar{p}}$ - $\mathbf{\Omega}^+$ pairs: $f_0 < 0$ -> First Experiment Evidence of Strange-Dibaryon

> Two-pion 3D Femtoscopy:

Radii difference between pion+ pairs and pion- pairs can be largely described by the third-body Coulomb effect; isospin effect is small.

Stay tuned for more exciting results from RHIC Beam Energy Scan!!

Xiaofeng Luo

Acknowledgement:

Xin Dong, Xialei Jiang, Ving Luong, Ke Mi, Youquan Qi, Nu Xu, Kehao Zhang and other STAR members.

Theory Colleagues

Thank you for your attention!