QCD Critical Point: A Theoretical View

Jamie M. Karthein

Massachusetts Institute of Technology

- ➤ Expectations for a proper (first order) phase transition
 - ➤ From Reinhard Stock's talk on Monday:

Cabibbo and Parisi 1975

Volume 59B, number 1 PHYSICS LETTERS 13 October 1975 EXPONENTIAL HADRONIC SPECTRUM AND QUARK LIBERATION

N. CABIBBO

Istituto di Fisica, Università di Roma, Istituto Nazionale di Fisica Nucleare, Sezione di Rome, Italy G. PARISI Istituto Nazionale di Fisica Nucleare, Frascati, Italy Received 9 June 1975

Fig. 1. Schematic phase diagram of hadronic matter. ρ_R is the density of baryonic number. Quarks are confined in phase I and unconfined in phase II.

> Theoretical efforts on the nature of the QCD phase transition

➤ Early efforts

- [10] Robert D. Pisarski and Frank Wilczek. Remarks on the chiral phase transition in chromodynamics. *Phys. Rev.*, D29:338–341, 1984.
- [11] T. Celik, J. Engels, and H. Satz. The order of the deconfinement transition in su(3) yang- mills theory. Phys. Lett., B125:411–414, 1983.
- [12] John B. Kogut et al. Deconfinement and chiral symmetry restoration at finite temperatures in su(2) and su(3) gauge theories. *Phys. Rev. Lett.*, 50:393–396, 1983.
- [13] Steven A. Gottlieb et al. The deconfining phase transition and the continuum limit of lattice quantum chromodynamics. *Phys. Rev. Lett.*, 55:1958–1961, 1985.
- [14] F. R. Brown, N. H. Christ, Y. F. Deng, M. S. Gao, and T. J. Woch. Nature of the deconfining phase transition in su(3) lattice gauge theory. *Phys. Rev. Lett.*, 61:2058–2061, 1988.
- [15] M. Fukugita, M. Okawa, and A. Ukawa. Order of the deconfining phase transition in su(3) lattice gauge theory. *Phys. Rev. Lett.*, 63:1768–1771, 1989.
- [16] M. A. Halasz, A. D. Jackson, R. E. Shrock, Misha A. Stephanov, and J. J. M. Verbaarschot. On the phase diagram of QCD. *Phys. Rev.*, D58:096007 [11 pages], 1998.
- [17] Jurgen Berges and Krishna Rajagopal. Color superconductivity and chiral symmetry restoration at nonzero baryon density and temperature. *Nucl. Phys.*, B538:215–232, 1999.
- [18] Bernd-Jochen Schaefer and Jochen Wambach. The phase diagram of the quark meson model. Nucl. Phys., A757:479–492, 2005.
- [19] T. Herpay, A. Patkos, Zs. Szep, and P. Szepfalusy. Mapping the boundary of the first order finite temperature restoration of chiral symmetry in the (m(pi) m(k))-plane with a linear sigma model. *Phys. Rev.*, D71:125017 [15 pages], 2005.

➤ Physical point: Aoki et al (2006) Rapid crossover!

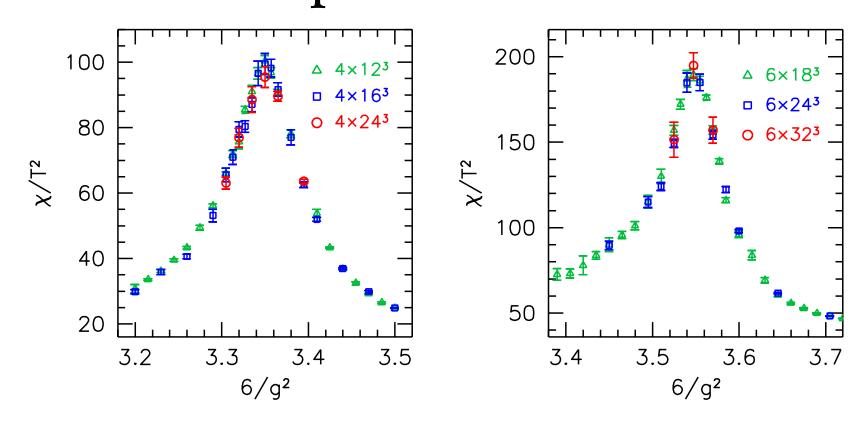


Figure 1: Susceptibilities for the light quarks for $N_t=4$ (left panel) and for $N_t=6$ (right panel) as a function of $6/g^2$, where g is the gauge coupling (T grows with $6/g^2$). The largest volume is eight times bigger than the smallest one, so a first-order phase transition would predict a susceptibility peak that is eight times higher (for a second-order phase transition the increase would be somewhat less, but still dramatic). Instead of such a significant change we do not observe any volume dependence. Error bars are s.e.m.

> Theoretical efforts on the nature of the QCD phase transition

➤ Early efforts

- [10] Robert D. Pisarski and Frank Wilczek. Remarks on the chiral phase transition in chromodynamics. *Phys. Rev.*, D29:338–341, 1984.
- [11] T. Celik, J. Engels, and H. Satz. The order of the deconfinement transition in su(3) yang- mills theory. Phys. Lett., B125:411–414, 1983.
- [12] John B. Kogut et al. Deconfinement and chiral symmetry restoration at finite temperatures in su(2) and su(3) gauge theories. *Phys. Rev. Lett.*, 50:393–396, 1983.
- [13] Steven A. Gottlieb et al. The deconfining phase transition and the continuum limit of lattice quantum chromodynamics. *Phys. Rev. Lett.*, 55:1958–1961, 1985.
- [14] F. R. Brown, N. H. Christ, Y. F. Deng, M. S. Gao, and T. J. Woch. Nature of the deconfining phase transition in su(3) lattice gauge theory. *Phys. Rev. Lett.*, 61:2058–2061, 1988.
- [15] M. Fukugita, M. Okawa, and A. Ukawa. Order of the deconfining phase transition in su(3) lattice gauge theory. *Phys. Rev. Lett.*, 63:1768–1771, 1989.
- [16] M. A. Halasz, A. D. Jackson, R. E. Shrock, Misha A. Stephanov, and J. J. M. Verbaarschot. On the phase diagram of QCD. *Phys. Rev.*, D58:096007 [11 pages], 1998.
- [17] Jurgen Berges and Krishna Rajagopal. Color superconductivity and chiral symmetry restoration at nonzero baryon density and temperature. *Nucl. Phys.*, B538:215–232, 1999.
- [18] Bernd-Jochen Schaefer and Jochen Wambach. The phase diagram of the quark meson model. Nucl. Phys., A757:479–492, 2005.
- [19] T. Herpay, A. Patkos, Zs. Szep, and P. Szepfalusy. Mapping the boundary of the first order finite temperature restoration of chiral symmetry in the (m(pi) m(k))-plane with a linear sigma model. *Phys. Rev.*, D71:125017 [15 pages], 2005.

➤ Physical point: Aoki et al (2006) Rapid crossover!

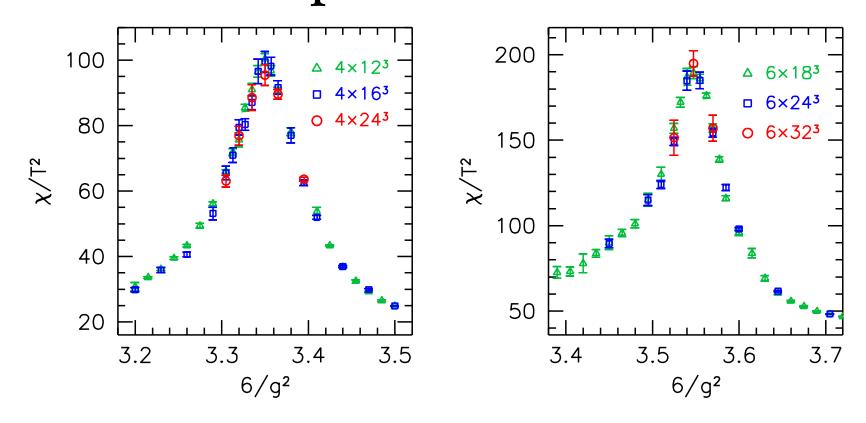


Figure 1: Susceptibilities for the light quarks for $N_t=4$ (left panel) and for $N_t=6$ (right panel) as a function of $6/g^2$, where g is the gauge coupling (T grows with $6/g^2$). The largest volume is eight times bigger than the smallest one, so a first-order phase transition would predict a susceptibility peak that is eight times higher (for a second-order phase transition the increase would be somewhat less, but still dramatic). Instead of such a significant change we do not observe any volume dependence. Error bars are s.e.m.

What about finite density?

- \succ Change in the order of the transition \rightarrow critical point: enter universality classes
 - ➤ Static: 3D Ising Rajagopal & Wilczek, Nucl.Phys.B (1993)
 - ➤ Dynamic: Model H Son & Stephanov, Phys.Rev.D (2004)
 - > Scaling equation of state of 3D Ising model Guida & Zinn-Justin, Nucl.Phys.B 489 (1997) based Josephson-Schofield (1969) parametric equation of state

Exponent		Definition
α	С	$\propto (T-T_c)^{-\alpha}$
β	M	$\propto (T_c - T)^{\beta}$
γ	χ	$\propto (T-T_c)^{-\gamma}$
δ	M	$\propto h^{1/\delta}$
ν	ξ	$\propto (T-T_c)^{-\nu}$
η	$\Gamma(n) \propto n ^{2-d-\eta}$	

- \triangleright Fluctuations serve as critical signal (diverging ξ):
 - ➤ M. Stephanov, K. Rajagopal and E. Shuryak, PRL (1998)

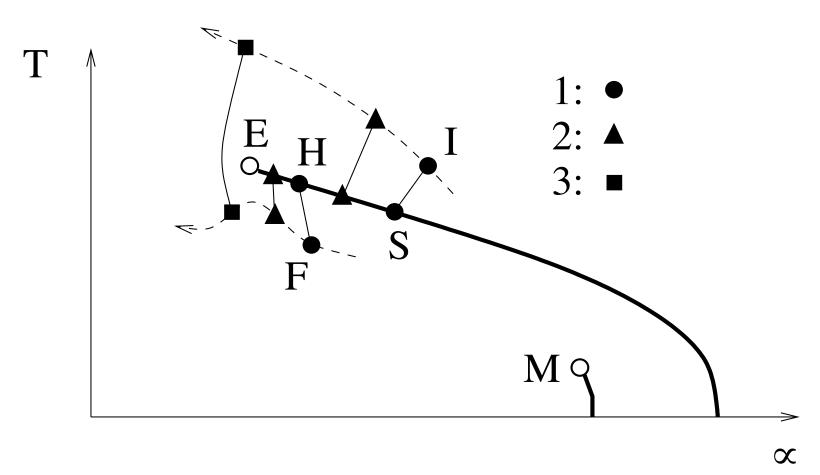
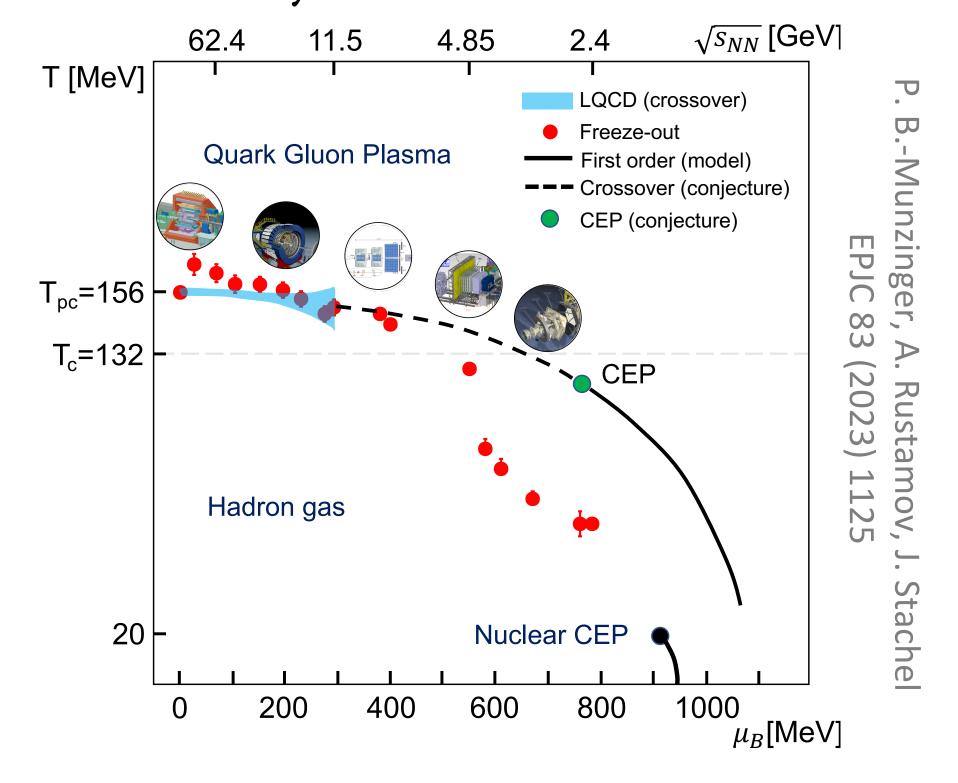


FIG. 2. Schematic examples of three possible trajectories for three values of x on the phase diagram of QCD (see. Fig. 1). The points I, S, H and F on different trajectories are marked with different symbols. The dashed lines show the locations of the initial, I, and final, F, points as x is increased in the direction shown by the arrows.

➤ From Mesut Arslandok's talk on Friday:



- \succ Fluctuations serve as critical signal (diverging ξ):
 - ➤ M. Stephanov, K. Rajagopal and E. Shuryak, PRD (1999)
 - **>** ...
 - ➤ M. Stephanov, PRL (2009) & PRL (2011)

$$\kappa_2 = \langle \sigma^2 \rangle = VT\xi^2$$

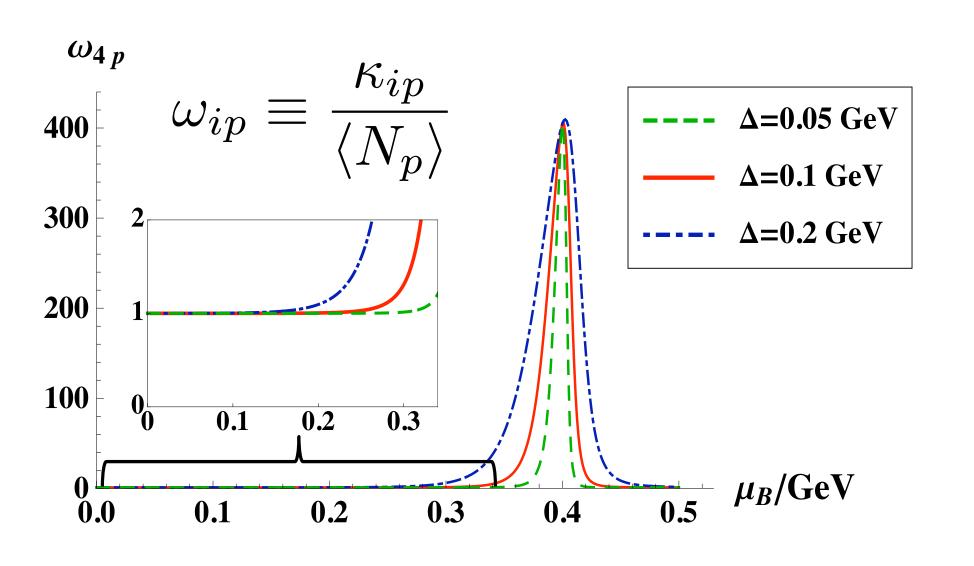
$$\kappa_3 = \langle \sigma^3 \rangle = 2\lambda_3 VT^2 \xi^6 = 2\tilde{\lambda}_3 VT^{3/2} \xi^{9/2}$$

$$\kappa_4 = \langle \sigma^4 \rangle_c \equiv \langle \sigma^4 \rangle - 3\langle \sigma^2 \rangle^2$$

$$= 6VT^3 [2(\lambda_3 \xi)^2 - \lambda_4] \xi^8$$

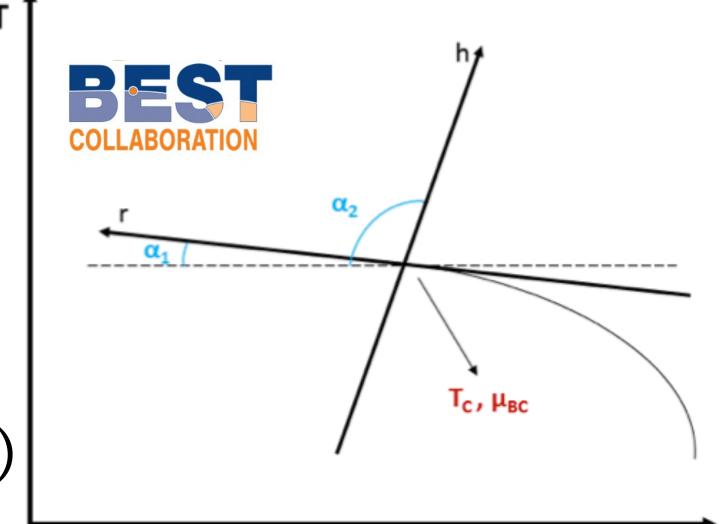
$$= 6VT^2 [2\tilde{\lambda}_3^2 - \tilde{\lambda}_4] \xi^7$$

➤ Relate to experimental observables: C. Athanasiou, K. Rajagopal, M. Stephanov, PRD (2010)



Ingredients to Study Critical Point Effect

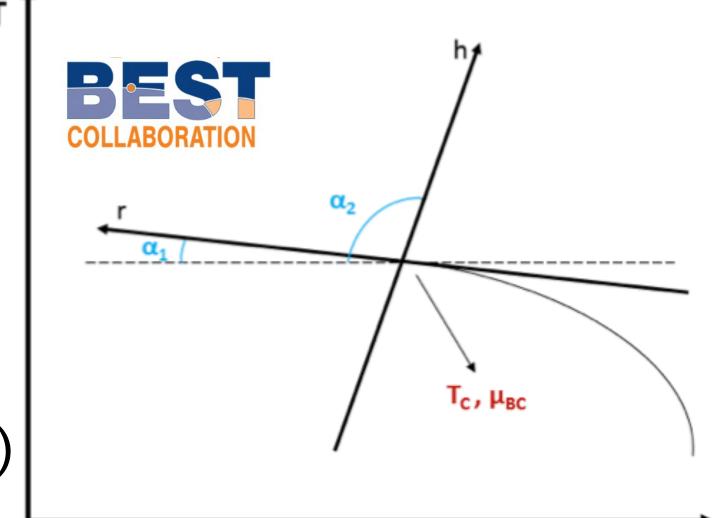
- ➤ Need an equation of state with critical features: utilize the BEST EoS mapping between the 3D Ising model and QCD
 - ➤ P. Parotto et al, PRC (2020),
 - $> \langle n_S = 0 \rangle, \frac{n_Q}{n_B} = 0.4$: J. M. Karthein et al, EPJ+ (2021)
 - \blacktriangleright Higher μ_B : M. Kahangirwe et al, PRD (2024)
 - First order: J.M Karthein, V. Koch, C. Ratti, PRD (2025)



- ➤ Need a method of relating to particle correlators: maximum entropy method
 - ➤ M. Pradeep & M. Stephanov, PRL (2023)

Ingredients to Study Critical Point Effect

- ➤ Need an equation of state with critical features: utilize the BEST EoS mapping between the 3D Ising model and QCD
 - ➤ P. Parotto et al, PRC (2020),
 - $> \langle n_S = 0 \rangle, \frac{n_Q}{n_B} = 0.4$: J. M. Karthein et al, EPJ+ (2021)
 - \blacktriangleright Higher μ_B : M. Kahangirwe et al, PRD (2024)
 - First order: J.M Karthein, V. Koch, C. Ratti, PRD (2025)



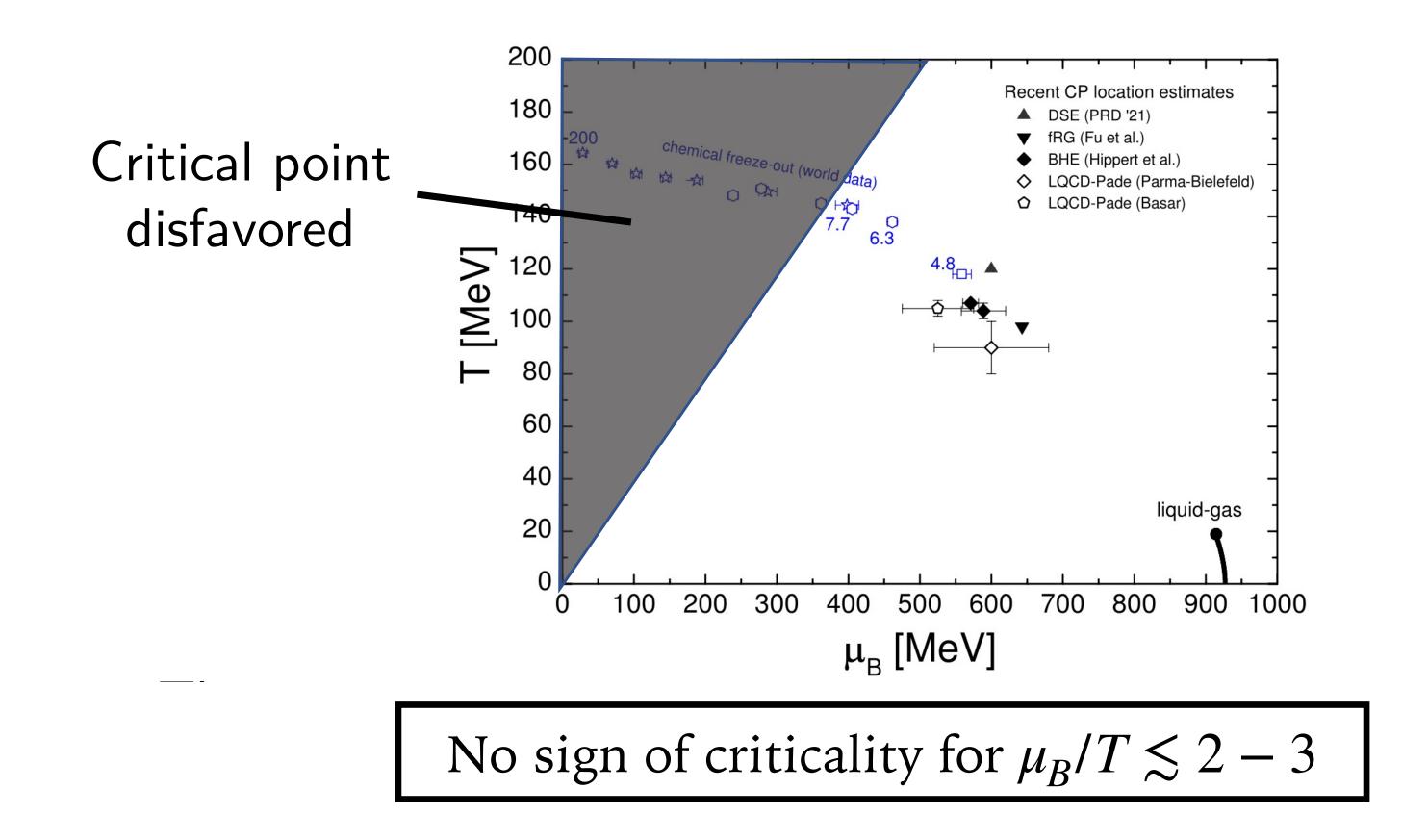
- ➤ Need a method of relating to particle correlators: maximum entropy method
 - ➤ M. Pradeep & M. Stephanov, PRL (2023)

Also need dynamics! T. Schaefer, M. Singh talks at QM25; Hydro+: M. Stephanov and Y. Yin PRD (2018) & K. Rajagopal, G. Ridgway et al PRD (2020) & M. Pradeep, K. Rajagopal et al PRD (2022)

I. Selected recent efforts on limits of critical point location from theory

Limits on Critical Point as of QM 2023

- ➤ Lattice calculations then limited exclusions strictly to the expansion parameter
 - ➤ From Volodymyr Vovchenko's talk at QM 2023



Limit from Curvature of Chiral Phase Transition

- ➤ HotQCD collaboration: estimate from the curvature of the chiral phase transition line and limit on the critical temperature from A. Halasz et al, PRD (1998)
 - ➤ From Jishnu Goswami's talk on Wednesday:

The parametrization of the pseudo-critical line of QCD:

$$\begin{split} T_{pc}(\mu_B) &= T_{pc,0} \left[1 - \kappa_2 \hat{\mu}_B^2 + \kappa_4 \hat{\mu}_B^4 \right] \\ T_{pc,0} &= (156.5 \pm 1.5) \text{ MeV}, \kappa_2 = 0.012(4), \kappa_4 = 0.000(4) \end{split}$$

The CEP most likely will exist below, $T < 132\,$ MeV. [Halasz et al,arXiv:hep-ph/9804290]

$$\mu_{B} = \frac{T_{pc}(\mu_{B})}{\sqrt{0.012}} \sqrt{1 - \frac{T_{pc}(\mu_{B})}{156.5 \text{ MeV}}}$$

$$T_{pc} \rightarrow 156.5 \text{ MeV} ; \mu_{B} \rightarrow 0$$

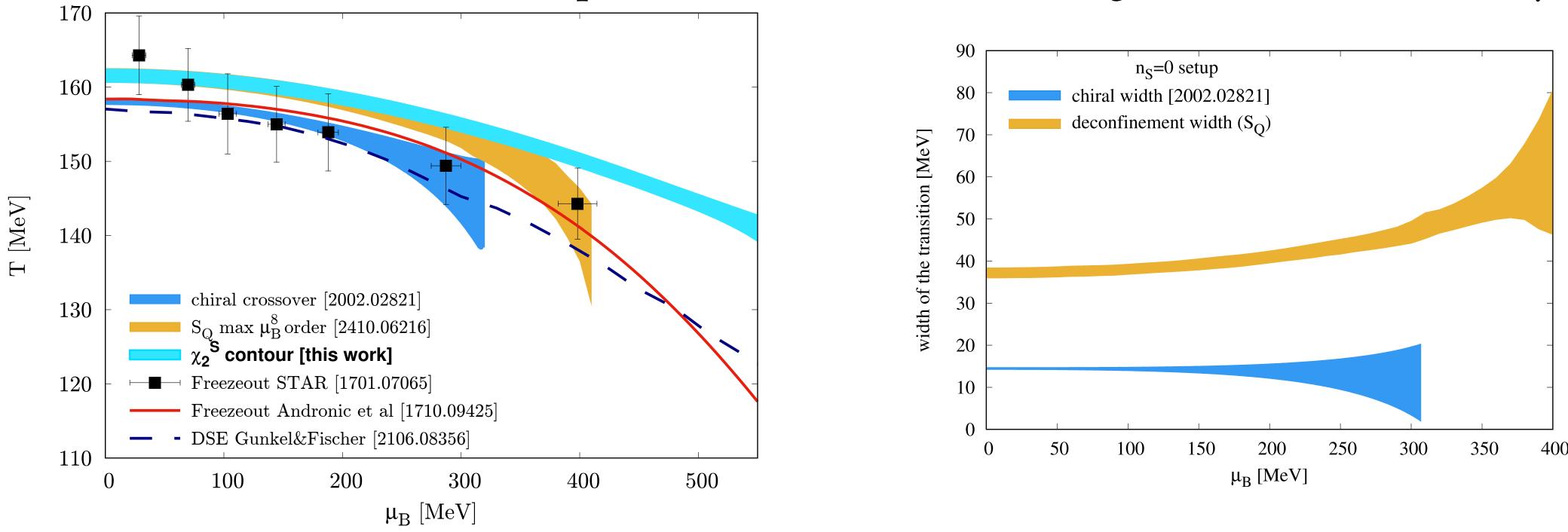
$$T_{pc} \rightarrow 132 \text{ MeV} ; \mu_{B} \rightarrow 470 \text{ MeV}$$

$$T_{pc} \rightarrow 0 \text{ MeV} ; \mu_{B} \rightarrow 0$$

No sign of criticality for T > 132 MeV and $\mu_B < 470$ MeV

Deconfinement & Strangeness for Phase Boundary

- ➤ Wuppertal-Budapest collaboration: obtain transition lines from the maximum of the static quark entropy and the strangeness susceptibilities
 - ➤ From Paolo Parotto's poster and Chik Him Wong's talk on Wednesday:



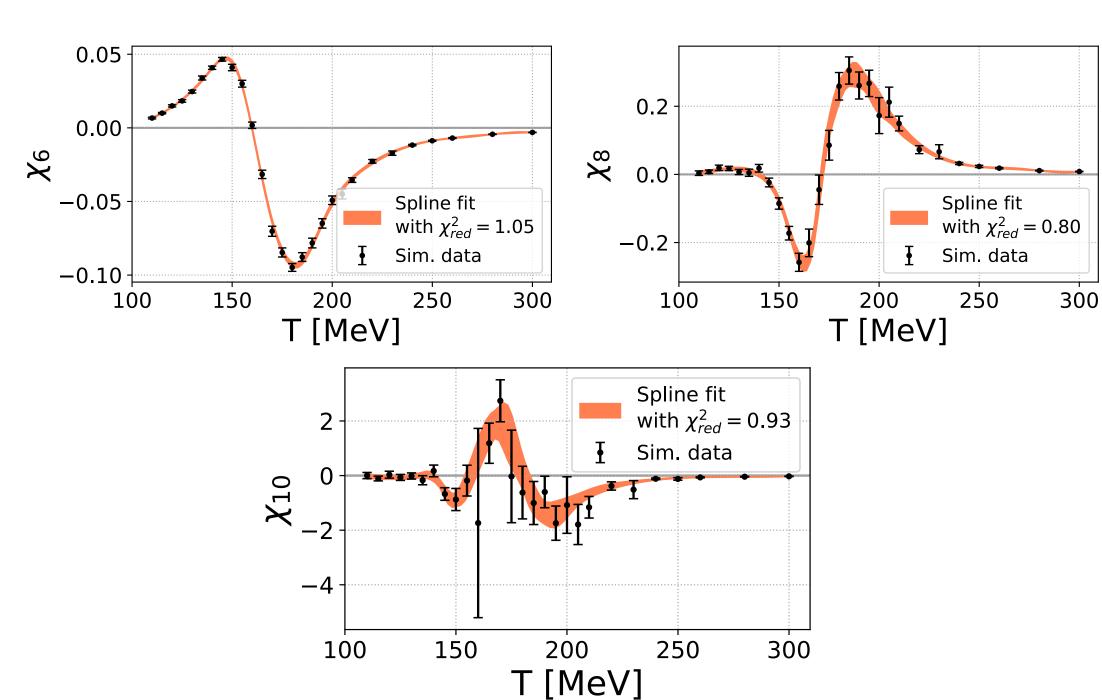
No sign of criticality for $\mu_B < 400$ MeV (S_O max) or as large as 600 MeV (χ_S^2)

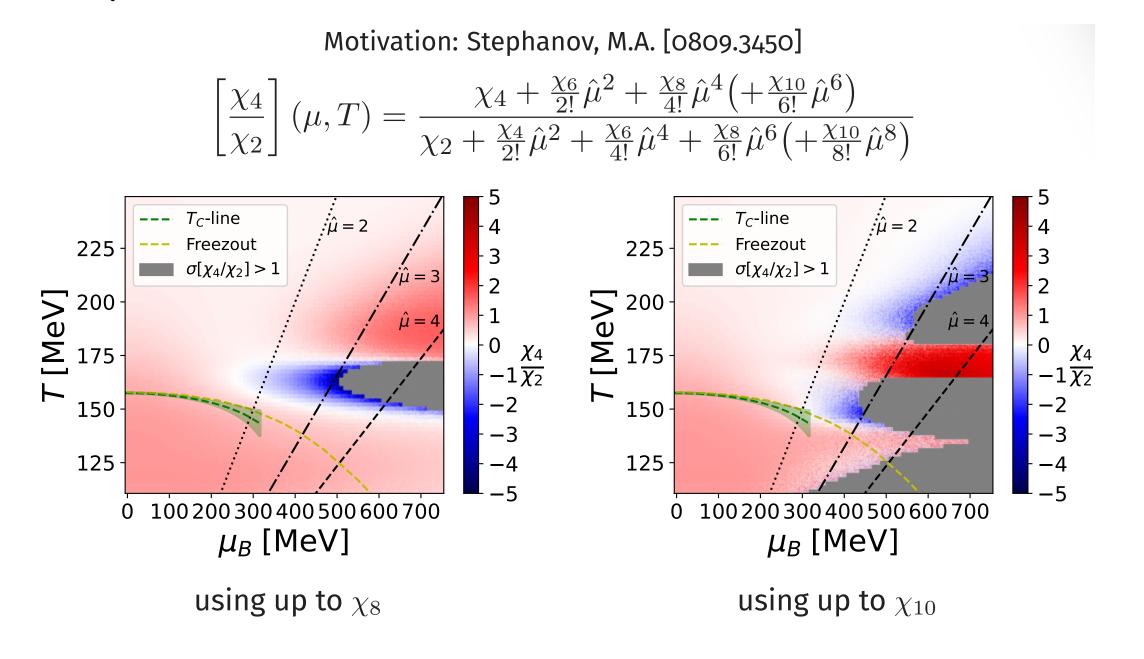
High Statistics for Higher Order Fluctuations

➤ Wuppertal-Budapest collaboration: brute force lattice method with extreme statistics to obtain higher order baryon cumulants (Taylor coefficients)

➤ From Alexander Adam's talk on Thursday:

- Volume: $16^3 \times 8$
- ullet ≈ 2 million configs. per T at $\mu=0$
- 2+1 flavours with 4 HEX smearing
- Simulated at physical quark mass

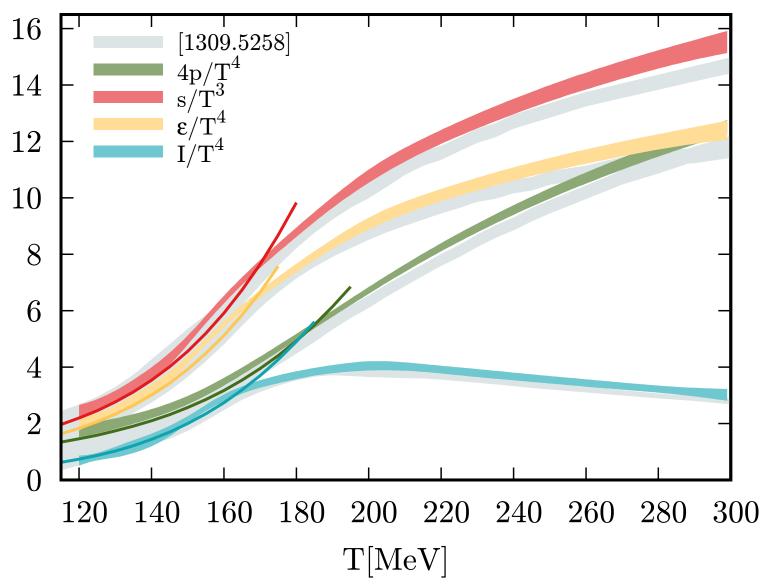


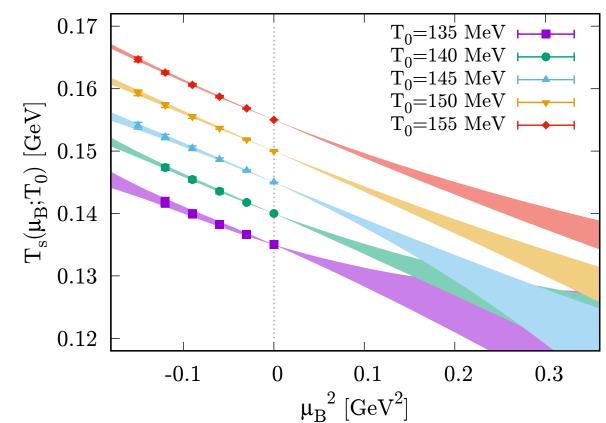


No sign of criticality observed

Increased Precision Equation of State

- ➤ Wuppertal-Budapest collaboration: increased precision on the EoS \rightarrow extract information via extrapolation to real, finite μ_B
 - ➤ From Jana's Guenther's talk on Thursday:



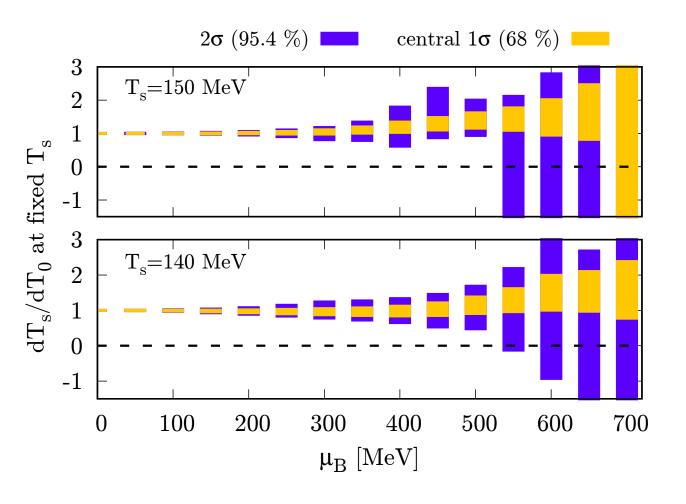


 $T_s(\mu_B^2, T_0) = \frac{T_0 + a\mu_B^2}{1 + b\mu_B^2}$

Contours of constant entropy obtained from fixing entropy $s(T_0)$ and determining $T_S(\mu_B^2, T_0)$:

No sign of criticality for $\mu_B < 450 \text{ MeV}$

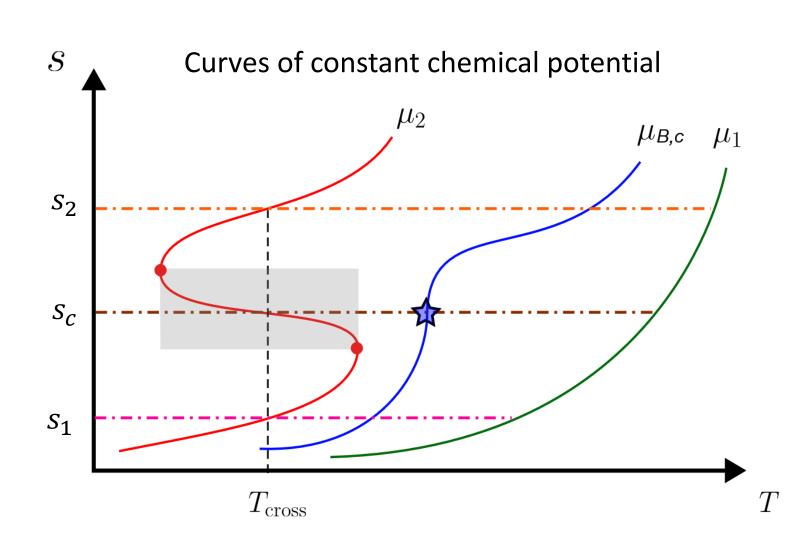
At the critical point T_S v. T_0 becomes flat: $\frac{dT_S}{dT_0} = 0$

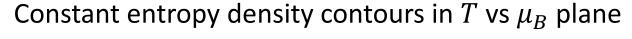


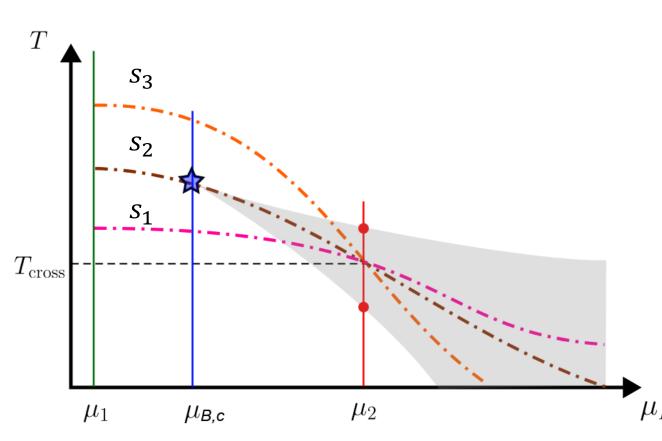
II. Selected recent efforts on estimating critical point location from theory

Extrapolation from Constant Entropy Contours

- ➤ Estimate critical point location from spinodal features of first order transition
 - ➤ From Hitansh Shah's talk on Wednesday:







The power series expansion for these entropy density contours

$$T_s(\mu_B; T_0) \sim T_0 + \sum_{n=1}^{N} \alpha_{2n}(T_0) \frac{\mu_B^{2n}}{(2n)!} + O(\mu_B^{2(N+1)})$$

$$\alpha_{2n}(T_0) = \left(\frac{\partial^{2n}T}{\partial \mu_B^{2n}}\right)_S \Big|_{T=T_0, \mu_B=0}$$

We truncate the expansion up to 2^{nd} order in μ_B which gives:

$$T_s(T_0; \mu_B) = T_0 + \frac{\alpha_2(T_0)\mu_B^2}{2!}$$

$$\alpha_2(T_0) = \left(\frac{\partial^2 T}{\partial \mu_B^2}\right)_s \Big|_{T = T_0, \mu_B = 0} = -\frac{2T_0 \chi_2^B(T_0) + T_0^2 \chi_2^{B'}(T_0)}{s'(T_0)} \Big|_{\mu_B = 0}$$

➤ Estimates from lattice parametrization and spline fit with collision energy range:

$$\mu_{B,c} = 602 \pm 62 \text{ MeV}$$
 $T_c = 114 \pm 7 \text{ MeV}$

$$\mu_{B,c} = 556 \pm 50 \text{ MeV}$$
 $T_c = 119 \pm 5 \text{ MeV}$

We find the collision energy $\sqrt{s_{NN}}$ from the range $4-6~{\rm GeV}$ to be in the closest vicinity of the CP.

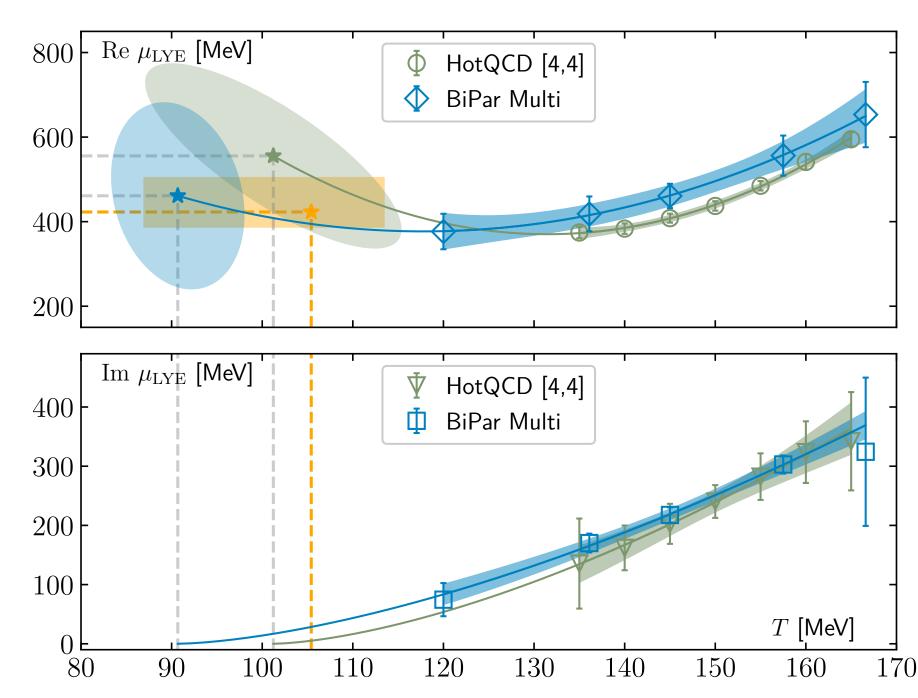
Also applied to holographic model fit to lattice with critical point around ($T_c = 103 \text{ MeV}, \mu_{B,c} = 599 \text{ MeV}$)

Estimate from Lee Yang Edge Singularity

► Lee Yang edge singularity: zeroes of the partition function appear at imaginary values of μ_B due to a branch cut along the real h axis with location from universality:

$$z_{LY} = \frac{t}{h^{1/\beta\delta}} = |z_c| e^{i\frac{\pi}{2\beta\delta}}$$

- ➤ Critical point observed where branch cut pinches the real axis
 - ➤ From Christian Schmidt's poster:

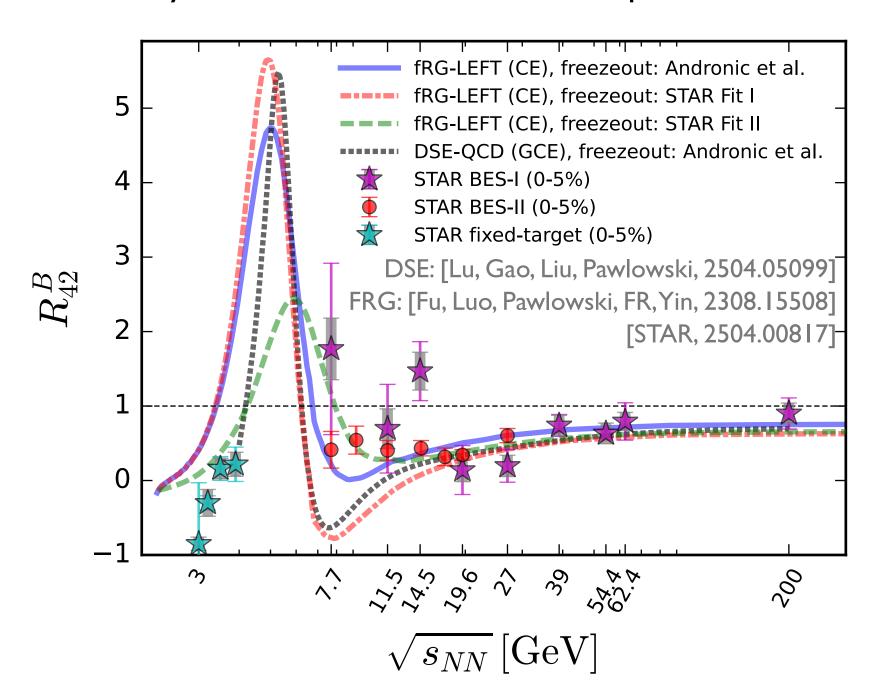


See also: Basar PRC (2024)

Estimates from Functional QCD Methods

- ➤ Dyson-Schwinger (DSE) approach and functional renormalization group (FRG) methods in agreement with different truncations
 - ➤ From Fabian Rennecke's talk:

net-baryon fluctuations in QCD vs net-protons from STAR



apples to half-apples comparison! [Vovchenko, QM2023] qualitative features matter here!

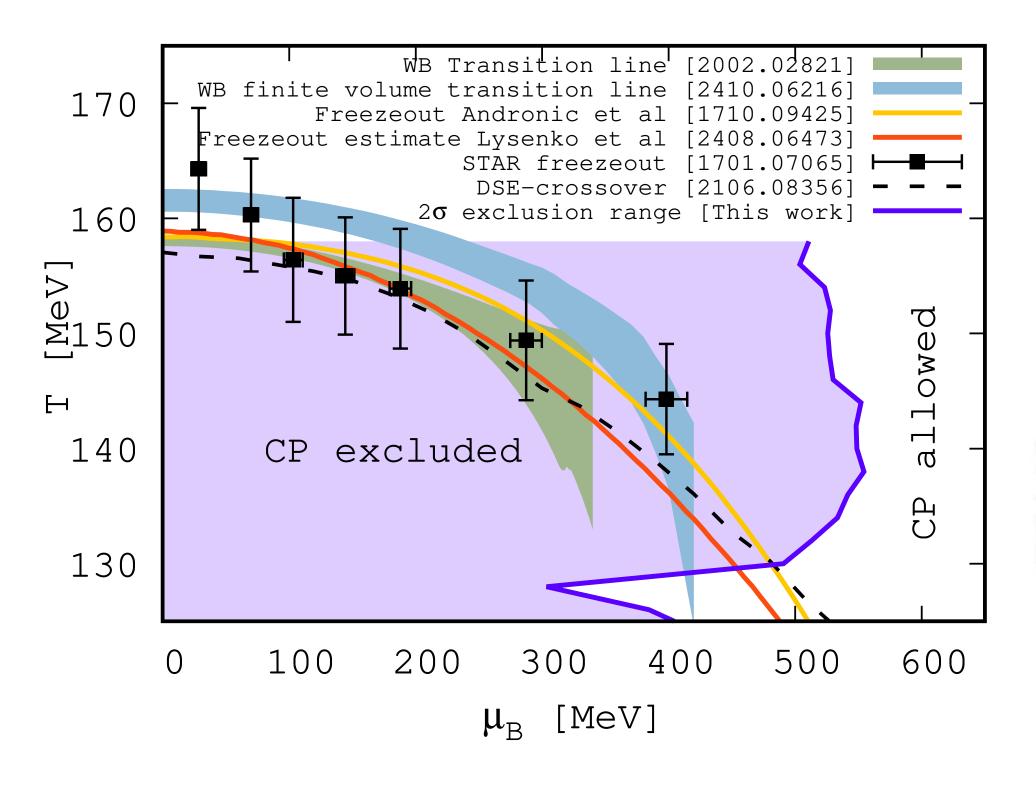
- direct calculations: non-monotonicity at low beam-energies
- no signs of critical scaling seen along freeze-out
 - direct signal of narrowed chiral crossover; CEP location encoded in peak height

[Fu, Luo, Pawlowski, FR, Yin, 2308. I 5508]

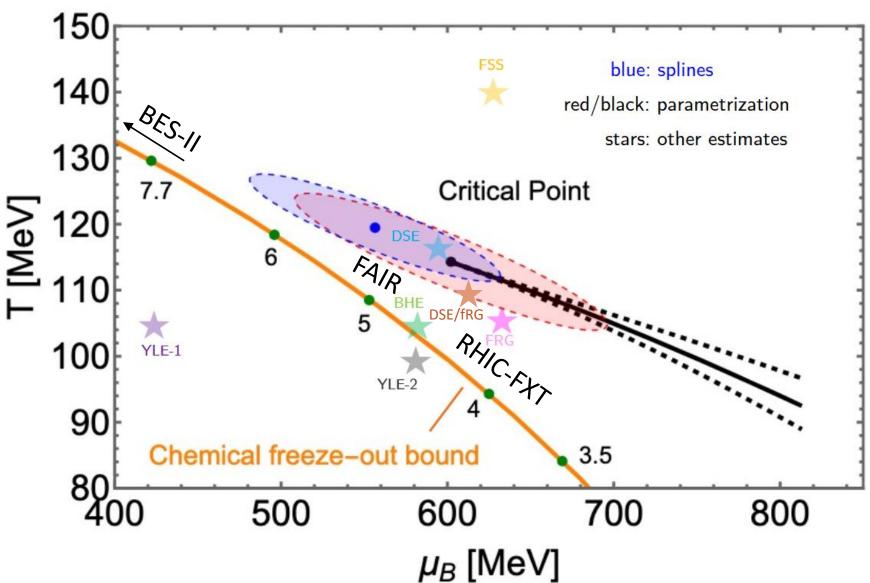
Focus of next talk by Jan Pawlowski data between $\sqrt{s_{NN}} = 4 - 8 \,\text{GeV}$ will be crucial!

Conclusions

- ➤ Many groups/methods converging on expectations for critical point location!
- ➤ Lattice limits: $T \lesssim 130$ MeV and $\mu_B \gtrsim 450$ MeV



Theory estimates: $T_c \sim 100$ MeV and $\mu_B \sim 600$ MeV



YLE-1: D.A. Clarke et al, arXiv:2405.10196

YLE-2: G. Basar, PRC 110, 015203 (2024)

BHE: M. Hippert et al., PRD 110, 094006 (2024)

FRG: W-J. Fu et al., PRD 101, 054032 (2020)

DSE: P.J. Gunkel et al., PRD 104, 052202 (2021)

DSE/fRG: Gao, Pawlowski., PLB 820, 136584 (2021)

FSS: A. Sorensen et al., arXiv:2405.10278