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1) Introduction

2) TPSCo  65nm ISC technology validation

3) First stitched chips prototypes

4) MOSAIX – full scale, fully functional ALICE ITS3 detector prototype

5) Summary



Pixel detectors classification

3

➢ By fabrication technology:

HYBRID MONOLITHIC

3D-Integration (Wafer stacking, TSV …)

o Sensor and readout produced (optimized) independently

o Most of the currently operating HEP detectors

o Bump-bonding limits the pixel pitch

o Sensor and readout fabricated together

o Lower costs

o Pixel size driven by the in-pixel inteligence

o Lower material budget

➢ By readout architecture:

• Event readout -->  HEP

• Integrating -->  imaging

• Counting -->  X-ray imaging



Monolithic detectors in HEP experiments

4

➢ Star PXL detector (MIMOSA28)

• Running from 2014

• Twin well 0.35 μm CMOS (AMS)

• 18.4 µm pitch

• 576x1152 pixels,

• 20.2 x 22.7 mm2

• Rolling shutter readout

➢ ALICE ITS2 (ALPIDE)

• Running from 2020

• TowerJazz CMOS 180nm 

• 27 x 29 µm pitch

• 1024 x 512 pixels,

• 30 x 15 mm2

• Zero-suppressed readout



Towards 65 nm technology
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➢ TPSCo. (joint venture TJ & Panasonic) 65nm development 

done in the framework of WP1.2 EP R&D and ALICE ITS3

o 2D stitching possible

o Initially (MLR1) 5 metal layers, now 8 metals

➢ Collaborative effort undertaken by many institutes

o BNL / CERN / CPPM / DESY / IPHC / NIKHEF / RAL / 

Yonsei / INFN / ...

o Coordinated by CERN in the spirit of joint development

➢ Where are we at the moment?

• Two submissions taped-out

• Numerous (very encouraging!) measurements results

• Ongoing activities concentrated around:

- finising designs for ER2 

- preparing testing infrastructure

• ER3 – final sensor for ALICE ITS3 (installation duting LS3)



First submission (MLR1)
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First submission in TPSCo 65nm (MLR1)

7„Ongoing activities and status of the 65 nm MLR1 submission” by W. Snoeys 

➢ Technology validation

• transfer 10-year experience from TJ 180nm to 65nm

(proces modification: standard / blanket / n-gap)

• detection performance

• radiation hardness

➢ Design know-how 

• understanding the design kit 

limitation/features

• getting familiarity with IO structures

MLR1 OBJECTIVES: SUBMITTED CHIPS:

➢ Transistor test structures

➢ Pixel test structures

• APTS (44)

• DPTS (3)

• CE65 (4)

• CSA Pixel

➢ First batch of 

common functional blocks

• Temperature sensor

• Bandgap's 

• DAC's​

• LVDS/CML​

• .... 



Transistor Test Structures

8„Measurements of total ionizing dose effects in TPSCo 65 nm and influence of NMOS bulk bias” by A. Dorda Martin

• nMOS transistors works up to 1Grad (15% drop of ISAT
ON)

• pMOS transistors less resiliant

• Annealing at 100*C recovers the shifts in VTH

After 
annealing

TRANSISTORS RADIATION HADRNESS:



Pixel Test Structure 
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➢ APTS (Analog pixel test structure)

o 4x4 pixel matrix

o Pixel pitch 15 / 20 / 25 um

o SF / CSA input stage

o individually connected to IOs

➢ DPTS (Digital pixel test structure)

o 32x32 pixel matrix

o Pixel pitch 15 um

o CSA + discriminator

o Time preserving digital readout

➢ CE65 (Circuit Exploratoire 65 nm)

o 64x32 pixel matrix

o Pixel pitch 15 / 25 um

o SF / CSA input stage

o Rolling-shutter readout

„Strategic R&D Programme on Technologies for Future Experiments”  Annual Report 2022 



Pixel Test Structure 
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• 5 peaks clearly visible:

- Si(Kα) = 1.74 keV

- Si(Kα) escape peak (FeKα – SiKα= 4.16 keV)

- Fe(Kα) = 5.9 keV

- Fe(Kβ) = 6.49 keV

- 2x Fe(Kα)= 11.8 keV

Fe-Kβ

Si-Kα Escape 
peak

Si-Kα
2x Fe-Kα

CHARGE COLLECTION:

55Fe spectra from CE65

N-GAPStandard

Charge sharing comparision for different sensor variants

(based on CE65 results)

„Charge sensing properties of monolithic CMOS pixel sensors fabricated in a 65 nm technology” by S. Bugiel

Fe-Kα



Pixel Test Structure 

11„Digital Pixel Test Structures implemented in a 65 nm CMOS process” by  M. Šuljić

DETECTION EFFICIENCY:

https://arxiv.org/pdf/2212.08621.pdf

DPTS efficiency at different irradiation levels

@ room temp

https://arxiv.org/pdf/2212.08621.pdf


Pixel Test Structure 

12„TDR for the ALICE Inner Tracking System 3”  

SPATIAL RESOLUTION: DPTS resolution at different irradiation levels

APTS resolution for different pixel pitch

(emulating digital output)



Pixel Test Structure 

13„Strategic R&D Programme on Technologies for Future Experiments”  Annual Report 2022 

TIME RESOLUTION:
• 110 ps resolution for time difference between two planes

• ~77 ps resolution for a single plane



Pixel Test Structure 

14„Strategic R&D Programme on Technologies for Future Experiments”  Annual Report 2022 

SENSITIVE VOLUME THICKNESS:

• Cluster charge distribution MPV around 600e-

- epi-layer thickness ~11 um

- well matched accros different test chips



Second submission (ER1)
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Second submission (ER1) 
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➢ Develop stitching know-how

• Yield estimate

• Defects „masking”

• Power distribution

• Sensor depletion

• Waferscale spreads

• Methodology

➢ Continue R&D program

• Second batch of small exploratory detectors

• SEU chip

➢ Additional set of functional blocks:

• PLL

• LDO 

• DATA LINKS

• .... 

➢ Essential input for ER2

ER1 OBJECTIVES:

MOSS

MOST



Stitching technique
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➢ Wafer scale detector?  --> Stitching technique
• Dividing a reticle (typ 2 x 3 cm)

into a separate units:

• Stepping the lithography process with the repeated 
unit such that the connectivity on the edges is 
maintained

• Adding endcaps on the sides

„Development of the MOSAIXchipfortheALICE ITS3 upgrade” by P. Leitao TWEPP2024



Stitched sensors prototypes
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o 14 mm x 259 mm
o Two pixel pitches: 18um and 22.5um
o Modification of well established, priority encoder readout scheme (digital)
o Independent powering of half stitched units
o Conservative layout 

2.
5 

m
m

26 cm

SINGLE STITCH
(x10)

o 2.5 mm x 259 mm
o Pixel pitch: 18um
o Asynchronous hit-driven readout (ToA + ToT information)
o 4 common power domains
o High granularity local power gating to mitigate defects
o High local density preserved

MOSS:    (MONOLITHIC STITCHED SENSOR)

MOST:   (MONOLITHIC STITCHED SENSOR WITH TIMING)



Measurement setups
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MOSS Yield

20„EP R&D WP1.2 Monolithic CMOS Sensors” by F. Vasey

➢ Considerable fraction of the MOSS test units failing during power-up
o Shorts between power nets
o Significant wafer to wafer variations

➢ Understood thanks to indepth investigation
o Vertical shorts between two metal layers
o Followed-up with foundry
o Expected to disapear with the next submission



MOSS test beam results

21„EP R&D WP1.2 Monolithic CMOS Sensors” by F. Vasey

➢ MOSS measurement activities on-going on multiple fronts
o Full/Single-Stitch chips
o Test-beams

(efficiency, FHT, resolution)
o Irradiation camaigns
o SEU / SEL crossection measurements



MOST results

22„EP R&D WP1.2 Monolithic CMOS Sensors” by F. Vasey

➢ Chip fully functional

➢ Prove of concept for the asynchronous, hit-driven readout

➢ No issues across stitching boundaries
o 256 readout lines fully working across full length of the chip
o About 300ns round-trip propagation delay

➢ Recently tested with the beam
o data analysis on-going



Third submission (ER2)
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Motivation: ALICE ITS3
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➢ ALICE Inner Tracker System Udgrade:
• replacement of a standard stave based modules with 

truly cylindrical full silicon layers
--> minimal mechanical support thanks to the stiffens

       of bent silicon
• 5x lower material budget
• closer to the interaction point

ITS3

ITS2

„MAPS sensor developments in ALICE” by F. Reidt



Motivation: ALICE ITS3
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L0
L1L2

➢ Detector requirements:
• 50 um thick wafer-scale monolithic detector 
• extremely low power (below 40 mW/cm2)
• powered only from the endcaps
• bare silicon:

- no off-chip power reinforcement
- no off-chip data links 



Motivation: ALICE ITS3
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L0
L1L2

➢ Detector requirements:
• 50 um thick wafer-scale monolithic detector 
• extremely low power (below 40 mW/cm2)
• powered only from the endcaps

• bare silicon:
- no off-chip power reinforcement
- no off-chip data links 

MOSAIX



27

MOSAIX detector

➢ 1D stitching
• 19 mm x 266 mm 
• Pixel size: 18um x 22.8 um
• ~10 Mpixels

➢ Detection efficiency > 99%
➢ FHR < 0.1 pixel-1 s-1

➢ < 40mW/cm2

➢ Rad-hard
• 1013 NIEL (1MeV neq cm-2)
• 10 kGray TID
• Triple modular redundancy

➢ 2 us integration time
➢ 4.4 MHz/cm2 particle rate

➢ Stave on chip

„MOSAIX as a Case Study: Overview of the Stitched Chip for ITS3” by G. Aglieri Rinella



➢ Alice ITS3 layer:  26 cm x 6-10 cm devices 

➢ Yield needs careful assessment!  

➢ Operation with few defects must be possible

➢ Shorts probability to be minimized

28

Without countermeasure's
  --> yield gets very low with few shorts

Yield

L0
L1L2



Yield: Power planning – power segmentation
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➢ Two powering layers
▪ GLOBAL

 - very robust
 - supplies only configuration circuitry

▪ LOCAL
 - powers most of the chip
 - segmented into 144 independent tiles
 - allows defects isolation

➢ Safe power-up procedure:

▪ Separate services power domain 

▪ TIle's power for configuration before 
others supplies are ON

Defective tile adds 0.7% of dead area, 
but chip maintains functional!

„Power distribution over the wafer-scale monolithic pixel detector - MOSAIX for ALICE ITS3” by S. Bugiel



MOSAIX  consumption breakdown

➢ >2 A via short edge – only 28 supply pads (A+D) on LEC

➢ Redistributed on-chip over the 26 cm 

▪ IR drops --> challenging despite <40 mW/cm2

30

LEC – Left End-Cap
RSU – Repeated Sensor Unit
REC – Right End-Cap

MOSAIX powering  



Tiles powering schemes  
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Initial worst case IR drops estimates

➢ How to derive local power from the global?

• Serial powering:
 +  reduces IR drops

   not an option --> common PSUB

     



Tiles powering schemes  
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Initial worst case IR drops estimates

➢ How to derive local power from the global?

• Serial powering:
 +  reduces IR drops

   not an option --> common PSUB

• Per-tile Low-Dropout regulators (LDO):
+    control 

 +   current stability (shunt LDO)
 -    needs 3.3 V supply --> power consumption
 -     dual-rail regulation 

 -     complexity --> dead area  

➢ The only choice with up to 800 mV IR drops 
(per rail!)

     



Tiles powering schemes  
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➢ How to derive local power from the global?

• Serial powering:
 +  reduces IR drops

   not an option --> common PSUB

• Per-tile Low-Dropout regulators (LDO):
+    control 

 +   current stability (shunt LDO)
 -    needs 3.3 V supply --> power consumption
 -     dual-rail regulation 

 -     complexity --> dead area  

➢ The only choice with up to 800 mV IR drops 
(per rail!)

• Power switches:
 +  simplicity --> least area
+ power-efficient
 -  no control 
 - tiles operate at different supplies
     --> [1.2V +/- 10%] operation margins
     

Initial worst case IR drops estimates

Worst case IR drops in new metal stack



Global power grid simulation
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Results

• Simulation results matching 
preliminary predictions
 --> within specs

• Analog domain 
 - typical: 50mV max IR drop 
 - worst: 90mV
   (high consumption, worst RC)

•   Digital domain
 - typical: 50mV max IR drop 
 - worst:  80mV



Local power grid simulation
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Results

• Analog domain
- excellent uniformity 
  ( < 1 mV spreads)
- minor impact of global grid 
  (fan-in into pads)

• Digital domain 
- good uniformity 
 ( < 1 - 4 mV spreads)

- some impact of global grid visible
  (pads locations) G

AV
S

S
 p

ad
s



Summary  
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➢ MLR1 test structures qualified the TPSCo 65nm technology for the HEP applications
 - DPTS: 99% detection efficiency at 1015 NIEL, 27 *C
 - transistors radiation hardness comparable to the other 65nm nodes
 - <100 ns timing resolution
 - MIP MPV ~600 e-
 

➢ First stitched chip prototypes (MOSS, MOST) fabricated and being tested
 - both functional
 - validated the feasibility of wafer-scale detector
 - yield require careful assessment

➢ MOSAIX now in an advanced design stage
 - full-scale, fully-functional ALICE ITS3 prototype 
 - stave on chip
 - power segmentation introduced to cope with yield 
 - power consumption limited by the power distribution not by cooling



Thank you!



Backup



Off-chip power delivery  
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➢ Padring:
- up to 20 mV drop over standard power IO`s
    --> redesigned to increase conductivity

          towards  the core
     --> 4x improvement

➢ Off-chip powering:
- up to 20 mV drop on wire bonds
     --> customizes bond pads
    --> 2x improvement
- 15mV/rail cabling to C side
- Settling accuracy: ~15 mV

➢ With all the improvements we are just within specs!

bPOL

C-side

A-side
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