

R&D activities on monolithic pixel detectors in TPSCo 65 nm technology

Szymon Bugiel (CERN)

21 October, 2024

Overview

- 1) Introduction
- 2) TPSCo 65nm ISC technology validation
- 3) First stitched chips prototypes
- 4) MOSAIX full scale, fully functional ALICE ITS3 detector prototype
- 5) Summary

> By fabrication technology:

- o Sensor and readout produced (optimized) independently
- $\circ~$ Most of the currently operating HEP detectors
- Bump-bonding limits the pixel pitch

> By readout architecture:

- Event readout
 - --> HEP
- Integrating

٠

- --> imaging
- Counting --> X-ray imaging

SOI Pixel Detector

3D-Integration (Wafer stacking, TSV ...)

- Sensor and readout fabricated together
- \circ Lower costs
- Pixel size driven by the in-pixel inteligence
- Lower material budget

Monolithic detectors in HEP experiments

Star PXL detector (MIMOSA28)

- Running from 2014
- Twin well 0.35 µm CMOS (AMS)
- 18.4 µm pitch
- 576x1152 pixels,
- 20.2 x 22.7 mm2
- Rolling shutter readout

> ALICE ITS2 (ALPIDE)

- Running from 2020
- TowerJazz CMOS 180nm
- 27 x 29 µm pitch
- 1024 x 512 pixels,
- 30 x 15 mm2
- Zero-suppressed readout

Towards 65 nm technology

- Initially (MLR1) 5 metal layers, now 8 metals
- > Collaborative effort undertaken by many institutes
 - BNL / CERN / CPPM / DESY / IPHC / NIKHEF / RAL / Yonsei / INFN / ...
 - $\circ~$ Coordinated by CERN in the spirit of joint development

> Where are we at the moment?

- Two submissions taped-out
- Numerous (very encouraging!) measurements results
- Ongoing activities concentrated around:
 - finising designs for ER2
 - preparing testing infrastructure
- ER3 final sensor for ALICE ITS3 (installation duting LS3)

First submission (MLRI)

First submission in TPSCo 65nm (MLRI)

Technology validation

 transfer 10-year experience from TJ 180nm to 65nm (proces modification: standard / blanket / n-gap)

SUBMITTED CHIPS:

- Transistor test structures
- Pixel test structures
 - APTS (44)
 - DPTS (3)
 - CE65 (4)
 - CSA Pixel

 First batch of common functional blocks

EP R&D

- Temperature sensorBandgap's
- DAC's
- LVDS/CML
 -

- detection performance
- radiation hardness

Design know-how

- understanding the design kit limitation/features
- getting familiarity with IO structures

"Ongoing activities and status of the 65 nm MLR1 submission" by W. Snoeys

Transistor Test Structures

TRANSISTORS RADIATION HADRNESS:

- nMOS transistors works up to 1Grad (15% drop of I^{SAT}_{ON})
- pMOS transistors less resiliant

500

2500

1500

1000

SØ0

. ...

- Annealing at 100*C recovers the shifts in V_{TH}

1000

22

"Measurements of total ionizing dose effects in TPSCo 65 nm and influence of NMOS bulk bias" by A. Dorda Martin 8

> APTS (Analog pixel test structure)

- o 4x4 pixel matrix
- \circ Pixel pitch 15 / 20 / 25 um
- SF / CSA input stage
- o individually connected to IOs

DPTS (Digital pixel test structure)

- o 32x32 pixel matrix
- \circ Pixel pitch 15 um
- \circ CSA + discriminator
- Time preserving digital readout

> CE65 (Circuit Exploratoire 65 nm)

- o 64x32 pixel matrix
- Pixel pitch 15 / 25 um
- SF / CSA input stage
- o Rolling-shutter readout

"Strategic R&D Programme on Technologies for Future Experiments" Annual Report 2022 9

CHARGE COLLECTION:

Row [pixels]

Charge sharing comparision for different sensor variants

(based on CE65 results)

low dose n-type impl

p-epitaxial laye

N-GAP

depleted zone

Average contribution to cluster signal

pletion boundar

Average contribution to cluster signal

⁵⁵Fe spectra from CE65

 $- Fe(K_{\alpha}) = 5.9 \text{ keV}$

- Fe(K_β) = 6.49 keV

- 2x Fe(K_a)= 11.8 keV

"Charge sensing properties of monolithic CMOS pixel sensors fabricated in a 65 nm technology" by S. Bugiel ¹⁰

11

DETECTION EFFICIENCY:

"Digital Pixel Test Structures implemented in a 65 nm CMOS process" by M. Šuljić

SPATIAL RESOLUTION:

DPTS resolution at different irradiation levels

EP R&D ALIC

TIME RESOLUTION:

- 110 ps resolution for time difference between two planes
- ~77 ps resolution for a single plane

"Strategic R&D Programme on Technologies for Future Experiments" Annual Report 2022 13

SENSITIVE VOLUME THICKNESS:

- Cluster charge distribution MPV around 600e⁻
 - epi-layer thickness ~11 um
 - well matched accros different test chips

"Strategic R&D Programme on Technologies for Future Experiments" Annual Report 2022 14

Second submission (ERI)

Second submission (ERI)

ER1 OBJECTIVES:

Develop stitching know-how

- Yield estimate
- Defects "masking"
- Power distribution
- Sensor depletion
- Waferscale spreads
- Methodology

Continue R&D program

Second batch of small exploratory detectors

MOSS

MOST

- SEU chip
- > Additional set of functional blocks:
 - PLL
 - LDO
 - DATA LINKS
 -
- Essential input for ER2

Stitching technique

- Wafer scale detector? --> Stitching technique
 - Dividing a reticle (typ 2 x 3 cm) into a separate units:

- Stepping the lithography process with the repeated unit such that the connectivity on the edges is maintained
- Adding endcaps on the sides

Stitched sensors prototypes

Pixel pitch: 18um 0

14 mm

- Asynchronous hit-driven readout (ToA + ToT information)
- 4 common power domains 0
- High granularity local power gating to mitigate defects 0
- High local density preserved 0

Measurement setups

MOSS Yield

- > Considerable fraction of the MOSS test units failing during power-up
 - o Shorts between power nets
 - o Significant wafer to wafer variations

Understood thanks to indepth investigation

- Vertical shorts between two metal layers
- Followed-up with foundry
- o Expected to disapear with the next submission

SEM image of metal-to-metal short

CERN-LHCC-2024-003 / ALICE-TDR-021

Powering tests from chips of the first three wafers tested. The chips were thinned, diced, glued and bonded before testing

	1-TOP	UMIT	OK - I	OK - I	LIMIT	LIMIT	LIMIT	UMIT	OK - I	OK - I	OK - I
Wafer 17	1-BOT	OK - II	OK - II	OK - II	OK - II	UMIT	LIMIT	LIMIT	OK - II	OK-I	OK - II
	2-TOP	machanically broken									
	2-BOT	mechanically broken									
	3-TOP	OK - II	OK - II	OK - II	OK - II	LIMIT	LIMIT	LIMIT	OK - II	OK - I	OK - I
	3-BOT	UMIT	OK - I	OK - II	LIMIT	LIMIT	LIMIT	LIMIT	LIMIT	OK - II	LIMIT
	4-TOP	OK - I	OK - I	OK - I	UMIT	UMIT	LIMIT	LIMIT	OK - I	OK - II	OK - I
	4-BOT	OK - I	UMIT	OK - 1	UMIT	UMIT	LIMIT	UMIT	OK - I	OK - II	LIMIT
	5-TOP	OK - I	LIMIT	OK - I	LIMIT	OK - II	LIMIT	LIMIT	UMIT	OK - II	OK - I
	5-BOT	OK - II	OK - 1	OK - II	UMIT	LIMIT	OK - II	LIMIT	OK - I	OK - I	LIMIT
	6-TOP	OK - I	UMIT	OK - II	OK - II	UMIT	LIMIT	LIMIT	UMIT	OK - I	OK - I
	6-BOT	OK - II	OK - II	OK - 1	OK - II	OK - II	LIMIT	UMIT	OK - II	OK - II	OK - II
Wafer 24 Wafer 23	1-TOP	OK - II	OK-I	OK - II	UMIT	OK - II	OK - II	OK - I	LIMIT	OK - II	OK - II
	1-BOT	OK-I	OK - I	OK - 1	OK - I	OK - II	LIMIT	OK - II	OK - I	OK - II	OK - II
	2-TOP	OK - II	OK - I	LIMIT	UMIT	LIMIT	OK - II				
	2-BOT	OK - II	OK - II	OK - II	OK - II	OK - 1	LIMIT	OK - II	OK - 1	OK - II	OK - I
	3-TOP	OK - II	OK - 1	LIMIT	LIMIT	UMIT	LIMIT	LIMIT	OK - 1	OK - II	LIMIT
	3-BOT	OK - II	OK - I	OK - I	OK - II	OK - II	LIMIT	OK - II	OK - I	LIMIT	OK - II
	4-TOP	OK - II	LIMIT	LIMIT	LIMIT	OK - I	OK - II	OK - II	OK - II	OK - I	OK - I
	4-BOT	OK - II	OK - 1	OK - II	OK - II	OK - 1	OK - II	LIMIT	LIMIT	OK - I	OK - II
	5-TOP	OK - 1	OK - II	OK - II	LIMIT	OK - I					
	5-BOT	UMIT	OK - II	UMIT	OK - I	UMIT	UMIT	OK - II	OK - II	OK - I	OK - II
	6-TOP	OK - I	OK - 1	OK - 1	OK - II	UMIT	OK - I	OK - 11	OK - II	OK - II	OK - I
	6-BOT	OK - I	OK - 1	OK - I	OK - II	OK - II	LIMIT	OK - 11	OK - I	LIMIT	OK - I
	1-TOP	OK - I	OK - I	OK - I	OK - 1	OK - I	OK - I	OK - II	OK - I	OK - I	OK - I
	1-BOT	OK - 1	OK - 1	OK - I	OK-I	OK - I					
	2-TOP	OK + II	OK - I	OK - I	OK - II	OK - I	OK - I	OK - II	OK - I	OK - II	OK - I
	2-BOT	LIMIT	OK - I	OK - I	OK - 1	OK - I	OK - I	OK - 1	OK - I	OK - II	OK - I
	3-TOP					to bo	tostad				
	3-BOT	to be tested									
	4-TOP	OK - I	LIMIT	OK - I	OK - I	OK - I	OK - I	OK - II	OK - I	OK - I	OK - I
	4-BOT	OK - I	OK - 1	OK - I	OK - II	OK - I	OK - I	OK - I	OK - I	LIMIT	OK - I
	5-TOP	OK - I	OK - I	OK - I	OK - I	OK - I	OK - I	OK - I	OK - I	OK - II	OK - I
	5-BOT	OK - I	OK - 1	OK - I	OK - 1	OK - I	OK - I				
	6-TOP	OK - II	OK - 1	OK - I	OK - 1	OK - 1	OK - I				
	6-BOT	OK - I	OK - I	OK - I	OK - 1	OK - I	OK - I	OK - I	OK - 1	OK - I	OK - I
		RSU1	RSU2	RSU3	RSU4	RSU5	RSU6	RSU7	RSU8	RSU9	RSU10

MOSS test beam results

- MOSS measurement activities on-going on multiple fronts
 - \circ Full/Single-Stitch chips
 - Test-beams (efficiency, FHT, resolution)
 - o Irradiation camaigns
 - $\circ~$ SEU / SEL crossection measurements

21

MOST results

Chip fully functional

- > Prove of concept for the asynchronous, hit-driven readout
- No issues across stitching boundaries
 - $\circ~$ 256 readout lines fully working across full length of the chip
 - $\circ~$ About 300ns round-trip propagation delay

\succ Recently tested with the beam

 $\circ~$ data analysis on-going

Third submission (ER2)

Motivation: ALICE ITS3

"MAPS sensor developments in ALICE" by F. Reidt

Motivation: ALICE ITS3

Motivation: ALICE ITS3

- 1D stitching
 - 19 mm x 266 mm
- Pixel size: 18um x 22.8 um
- ~10 Mpixels
- Detection efficiency > 99%
- FHR < 0.1 pixel⁻¹ s⁻¹
- > < 40mW/cm²
- Rad-hard
 - 10¹³ NIEL (1MeV neq cm⁻²)
 - 10 kGray TID
 - Triple modular redundancy
- ➤ 2 us integration time
- ➤ 4.4 MHz/cm² particle rate
- Stave on chip

Yield

- Alice ITS3 layer: 26 cm x 6-10 cm devices \succ
- Yield needs careful assessment! \geq
- \geq Operation with few defects must be possible
- Shorts probability to be minimized \succ

➤ <u>Two powering layers</u>

- GLOBAL
 - very robust
 - supplies only configuration circuitry
- LOCAL
 - powers most of the chip
 - segmented into 144 independent tiles
 - allows defects isolation

Safe power-up procedure:

- Separate services power domain
- TIIe's power for configuration before others supplies are ON

Defective tile adds 0.7% of dead area, but chip maintains functional!

EP R&D

MOSAIX powering

MOSAIX consumption breakdown

LEC – Left End-Cap RSU – Repeated Sensor Unit REC – Right End-Cap

Initial worst case IR drops estimates

- > How to derive local power from the global?
 - Serial powering: ٠

 - reduces IR drops
 not an option --> common PSUB

Tiles powering schemes

Initial worst case IR drops estimates

How to derive local power from the global?

- Serial powering:
 - + reduces IR drops
 - X not an option --> common PSUB
- Per-tile Low-Dropout regulators (LDO):
 - + control
 - + current stability (shunt LDO)
 - needs 3.3 V supply --> power consumption
 - dual-rail regulation
 - complexity --> dead area
 - The only choice with up to 800 mV IR drops (per rail!)

Initial worst case IR drops estimates

Worst case IR drops in new metal stack

How to derive local power from the global?

- Serial powering:
 - + reduces IR drops
 - X not an option --> common PSUB
- Per-tile Low-Dropout regulators (LDO):
 - + control
 - + current stability (shunt LDO)
 - needs 3.3 V supply --> power consumption
 - dual-rail regulation
 - complexity --> dead area
 - The only choice with up to 800 mV IR drops (per rail!)

- Power switches:
 - + simplicity --> least area
 - + power-efficient
 - no control
 - tiles operate at different supplies
 - --> [1.2V +/- 10%] operation margins

Global power grid simulation

<u>Results</u>

- Simulation results matching preliminary predictions
 -> within specs
- Analog domain

 typical: 50mV max IR drop
 worst: 90mV
 - (high consumption, worst RC)
- Digital domain
 - typical: **50mV** max IR drop
 - worst: 80mV

Local power grid simulation

- good uniformity (<1-4 mV spreads) - some impact of global grid visible (pads locations)

3AVSS pads

Summary

> MLR1 test structures qualified the TPSCo 65nm technology for the HEP applications

- DPTS: 99% detection efficiency at 10¹⁵ NIEL, 27 *C
- transistors radiation hardness comparable to the other 65nm nodes
- <100 ns timing resolution
- MIP MPV ~600 e-

First stitched chip prototypes (MOSS, MOST) fabricated and being tested

- both functional
- validated the feasibility of wafer-scale detector
- yield require careful assessment

MOSAIX now in an advanced design stage

- full-scale, fully-functional ALICE ITS3 prototype
- stave on chip
- power segmentation introduced to cope with yield
- power consumption limited by the power distribution not by cooling

Thank you!

Backup

Off-chip power delivery

Padring:

- up to 20 mV drop over standard power IO's
 - --> redesigned to increase conductivity
 - towards the core
 - --> 4x improvement

Off-chip powering:

- up to 20 mV drop on wire bonds
 -> customizes bond pads
 -> 2x improvement
- 15mV/rail cabling to C side
- Settling accuracy: ~15 mV

➢ With all the improvements we are just within specs!

