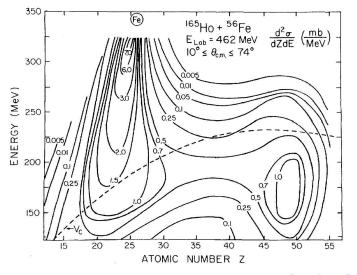
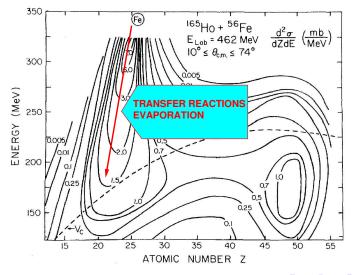

Introduction	The model	N-rich	End	Extra
00000				

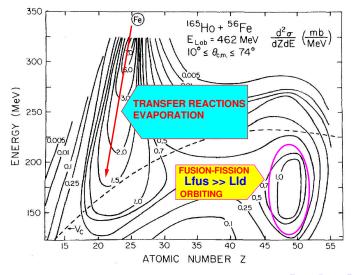
Model predictions for deep inelastic reactions: towards high Z and A.


Giovanni POLLAROLO Dipartimento di Fisica, Università di TORINO e INFN Sezione di Torino

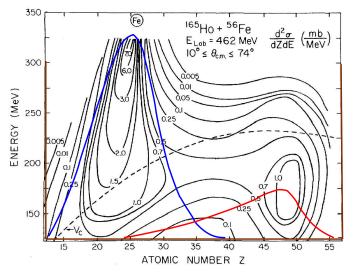
NUSTAR Annual Meeting At GSI, Darmstadt, Germany February 25th - March 1st 2013


(日) (同) (日) (日)

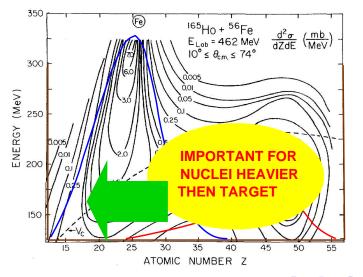
Introduction	The model	N-rich	End	Extra
00000				



▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ■ のの()


Introduction	The model	N-rich	End	Extra
0000				

Introduction	The model	N-rich	End	Extra
00000				



Introduction	The model	N-rich	End	Extra
0000				

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ≫ ○ < (

Introduction	The model	N-rich	End	Extra
00000				

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Introduction	The model	N-rich	End	Extra
00000	000000	000000		000000

The model - surface modes

To explain the large deformations of the fragments prior the separation one has to introduce degrees of freedoms describing **the shape** of the fragments.

This is usually done by indroducing:

adiabatic

Of course also the exhange of nucleons is important-**TRANSFER**

100 P 1 2 P 1 2 P

Introduction	The model	N-rich	End	Extra
00000	000000	000000		000000

The model - surface modes

To explain the large deformations of the fragments prior the separation one has to introduce degrees of freedoms describing **the shape** of the fragments.

This is usually done by indroducing:

Surface degrees of freedom	(collision time $ au = \sqrt{a/\ddot{r}_o}$)	
• INELASTIC $f_{in}(r) \sim e^{-r/a_{in}}$ (few channels but strong)	a _{in} = 0.65 fm	
• low lying: mass (D) large	NON adiabatic	
force (C) small • high lying: mass (D) small	coupled-channels adiabatic	
force (C) large		Ι.

Of course also the exhange of nucleons is important-**TRANSFER**

Introduction	The model	N-rich	End	Extra
00000				

The model - surface modes

To explain the large deformations of the fragments prior the separation one has to introduce degrees of freedoms describing **the shape** of the fragments.

This is usually done by indroducing:

Surface degrees of freedom	(collision time $ au = \sqrt{a/\ddot{r}_o}$)
• INELASTIC $f_{in}(r) \sim e^{-r/a_{in}}$	a _{in} = 0.65 fm
(few channels but strong)	
 low lying: mass (D) large 	NON adiabatic
force (C) small	coupled-channels
 high lying: mass (D) small 	adiabatic
force (C) large	

Of course also the exhange of nucleons is important-TRANSFER

Introduction	The model	N-rich 000000	End ⊙	Extra 000000
The model - t	ransfer			

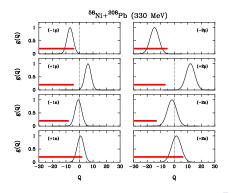
The exchange of nucleons is characterized by the presence of channels that are **weak but very numerous**. The transfer process is governed by:

• a matrix element of the form:

$$M_{etalpha'}\sim\int d^3r'\psi^{\dagger}_{i'}(ar{r}')V_a(|ar{r}'|)\psi_j(ar{\mathcal{R}}-ar{r}')\propto e^{-\kappa_{tr}\mathcal{R}}$$

Where V_a is the shell model potential binding the nucleon to the projectile or target (post/prior simmetry). The range parameter κ_{tr} is related to the binding-energy \mathcal{E} of the nucleon

$$\kappa_{a_1'} = \frac{1}{\hbar} \sqrt{2m_o(-\mathcal{E}_{a_1'})} \sim 0.6 \mathrm{fm}$$


・ロン ・雪 と ・ ヨ と

3

Introduction	The model	N-rich	End	Extra
○○○○●		000000	○	000000
The model - t	ransfer			

• Optimun Q-value conditions:

$$|P_{\beta lpha'} \sim |M_{\beta lpha'}(r_o)|^2 \exp \left(-\frac{(Q-Q_{opt})^2}{\hbar^2 \ddot{r}_o \kappa_{a'_1}}
ight)$$

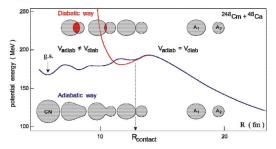
ロト (個) (注) (注) (注) つんの

Introduction	The model	N-rich	End	Extra
	●○○○○○	000000	O	000000
CPAZING				

The time evolution of a heavy-ion reaction is described by the following system of coupled equations :

$$i\hbar\dot{c}_{\beta}(t) = \sum_{\alpha} <\beta |H_{int}|\alpha > c_{\alpha}(t)e^{\frac{i}{\hbar}(E_{\beta}-E_{\alpha})t+i(\delta_{\beta}-\delta_{\alpha})}$$
$$i\hbar\dot{\Psi}(t) = (H_{0}+H_{int})\Psi(t)$$
$$\Psi(t) = \sum_{\beta} c_{\beta}(t)\psi_{\beta}e^{\frac{i}{\hbar}E_{\beta}t}$$

where ψ_{α} are the channels wave function (asymptotic states)


$$\psi_{\alpha}(t) = \psi^{a}(t)\psi^{A}(t)e^{i\delta(\vec{R})}$$

A. Winther Nucl.Phys. A572 (1994)191, Nucl.Phys. A594 (1995)203

Introduction	The model	N-rich	End	Extra
	00000			

The potential (frozen-density, diabatic)

 $V_{\text{diabat}}(R,\beta_1,\beta_2,\alpha,...) = V_{12}^{\text{folding}} (Z_1,N_1,Z_2,N_2;R, \beta_1,\beta_2,...) + M(A_1) + M(A_2) - M(\text{Proj}) - M(\text{Targ}) + M(A_2) - M(A_2$

 $\mathsf{V}_{adiabat}\left(\mathsf{R},\beta_{1},\beta_{2},\eta,...\right)=\mathsf{M}_{\mathsf{TCSM}}\left(\mathsf{R},\beta_{1},\beta_{2},\eta,...\right)-\mathsf{M}(\mathsf{Proj})-\mathsf{M}(\mathsf{Targ})$

Time -dependent driving potential has to be used

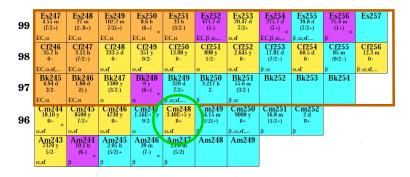
$$\begin{split} V(t) = & V_{\text{diab}}(\xi) \cdot exp(-\frac{t_{\text{int}}}{\tau_{\text{relax}}}) + V_{\text{adiab}}(\xi) \cdot [1 - exp(-\frac{t_{\text{int}}}{\tau_{\text{relax}}})] \\ & \tau_{\text{relax}} \sim 10^{-21} \text{ s} \end{split} \\ \begin{array}{c} \text{the same degrees of freedom } (\xi = \text{R}, 0, \phi_1, \phi_2, \beta_1, \beta_2, \eta_2, \eta_N) \ \text{i} \\ & \text{All forces, } F_i(t) = -\partial V/\partial \xi_i, \text{ are quite smooth} \end{split}$$

Borrowed from Valery Zagrebaev (IRIS10 Workshop, March 2010)

Introduction	The model ○○●○○○	N-rich 000000	End o	Extra 000000

The actinides (Cm target)

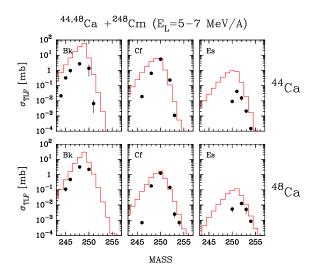
PHYSICAL REVIEW C


VOLUME 33, NUMBER 6

JUNE 1986

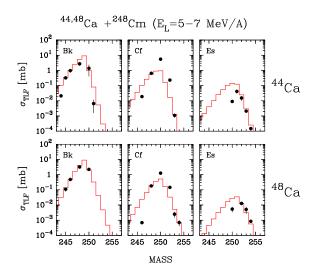
Production of cold target-like fragments in the reaction of ⁴⁸Ca + ²⁴⁸Cm

H. Gäggeler,^{*} W. Brüchle, M. Brügger, M. Schädel, K. Sümmerer, and G. Wirth Gesellschaft für Schwerionenforschung, D-6100 Darmstadt, Federal Republic of Germany

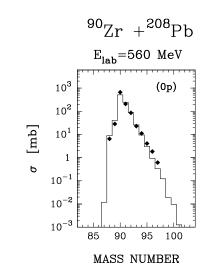

I V Kratz M Larch Th Blaich G Harrmann TN Hildebrand and N Trautmann

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - 釣ん

Introduction	The model	N-rich	End	Extra
	000000			

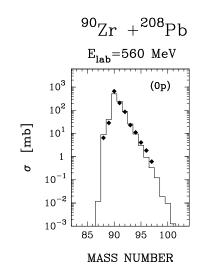

The actinides (Cm target)

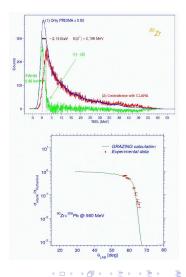
ロト 《御 》 《 注 》 《 注 》 … 注 … の � !


Introduction	The model	N-rich	End	Extra
00000	000000	000000		000000

The actinides (Cm target)

▲ロト ▲圖ト ▲注ト ▲注ト 二注 …のへの




æ

<ロト <回ト < 注ト < 注ト

The ⁹⁰Zr+²⁰⁸Pb system

Introduction	The model	N-rich	End	Extra
		00000		

Toward heavier then target nuclei

What we have seen up to now concern stable projectile. To populate **heavier then target nuclei** besides:

- proton stripping (-1p)
- neutron pick-up (+1n)

(these reactions populate nuclei with larger Z but smaller MASS) we have to OPEN also the:

- proton pick-up (+1p)
- neutron stripping (-1n)

Introduction	The model	N-rich	End	Extra
		00000		000000

Toward heavier then target nuclei

What we have seen up to now concern stable projectile. To populate **heavier then target nuclei** besides:

- proton stripping (-1p)
- neutron pick-up (+1n)

(these reactions populate nuclei with larger Z but smaller MASS) we have to OPEN also the:

- proton pick-up (+1p)
- neutron stripping (-1n)

N-rich projectiles

Introduction	The model	N-rich ○●○○○○	End O	Extra 00000c
Bindind en	ergy			

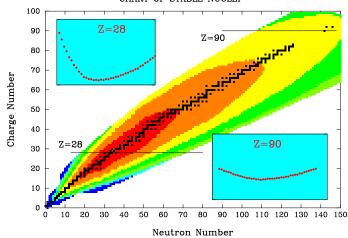
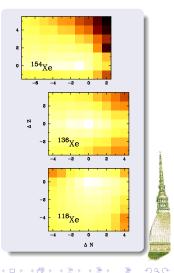


CHART OF STABLE NUCLEI

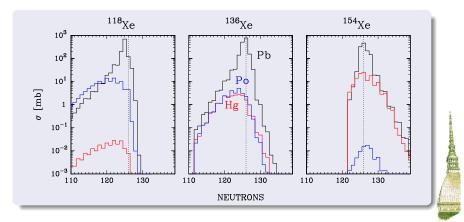
◆□> ◆□> ◆三> ◆三> ・三 のへの

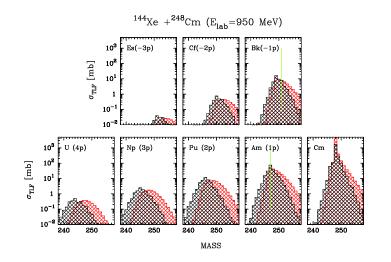

The model	N-rich	End	Extra
	000000		

The Xe + ²⁰⁸Pb reaction at $E_{c.m.}$ =700 MeV

The population of projectile-like fragments (corrected by evaporation of the light)

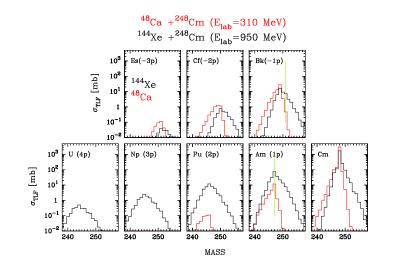
For stable nuclei the $Q_{opt}(N, Z)$ is such that only:


- proton stripping (-1p)
- neutron pick-up (+1n) are possible.


Introduction	The model	N-rich	End	Extra
		000000		

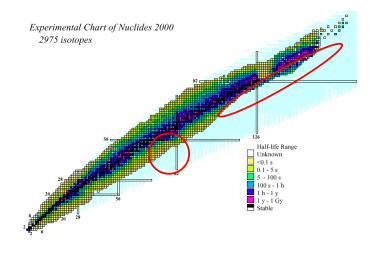
The Xe + 208 Pb reaction at E_{c.m.}=700 MeV

The population of the target-like fragments:

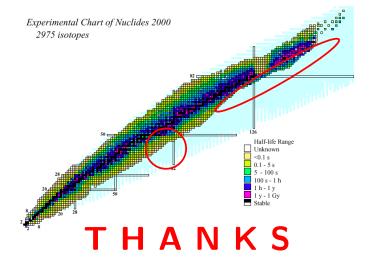


Introduction	The model	N-rich	End	Extra
00000		○○○○●○	o	000000
The 144 Xe -	∟ ²⁴⁸ Cm			

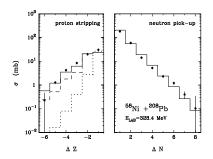
ロトメポトメミトメミト・ミークタ

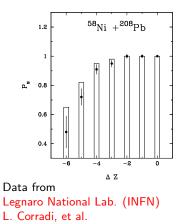

Introduction	The model	N-rich	End	Extra
00000		○○○○○●	○	000000
¹⁴⁴ Xe vers	$48C_{2}$			

ロトメロトメミトメミト・ミーク


Introduction	The model	N-rich	End	Extra
			•	

Where multinucleon-transfer



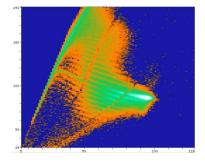

Introduction	The model	N-rich	End	Extra
			•	

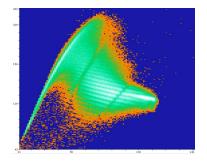
Where multinucleon-transfer

Introduction	The model	N-rich 000000	End ○	Extra ●000000
⁵⁸ Ni + ²⁰⁸ Pb				

<ロト <回ト < 注ト < 注ト

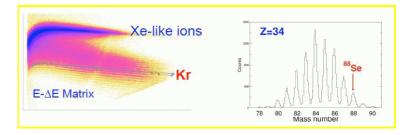
æ


Introduction	The model	N-rich 000000	End o	Extra ○●○○○○○
⁸² Se + ²⁴⁸ U				

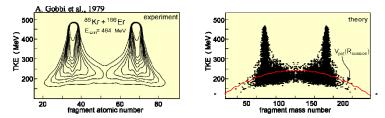


ロト (個) (注) (注) き) のへ(

Introduction	The model	N-rich 000000	Extra ○○●○○C

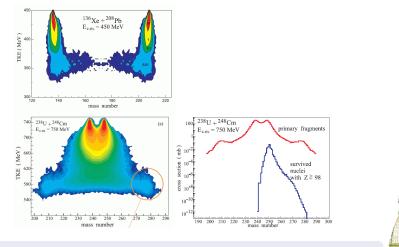

The ${}^{64}Ni + {}^{248}U$ and ${}^{82}Se + {}^{248}U$

A 15


Introduction	The model	N-rich	End o	Extra ○○○●○○
The ¹³⁶ Xe	+ ²⁴⁸ U			

<□> <@> < E> < E> E のQC

Introduction	The model	N-rich 000000	End o	Extra ○○○○●C
The ⁸⁶ Kr+	¹⁶⁶ Er			


^{86}Kr + ^{166}Er collision at $~E_{c.m.}$ = 464 MeV (Coulomb barrier = 260 MeV)

<ロ> (四) (四) (三) (三) (三)

Introduction	The model	N-rich	End	Extra
				00000

¹³⁶Xe + ²⁰⁸Pb and ²³⁸U+²⁴⁸Cm

V.I. Zagrebaev and W. Greiner Phys. Rev. C (2011) 044618

지나가 지대가 지문가 지문가 드문다.