Collinear Laser Spectroscopy @ ISOLDE - CERN



# Recent Developments in Collinear Laser Spectroscopy at COLLAPS

<u>D. T. Yordanov</u><sup>1</sup>, D. L. Balabanski<sup>2</sup>, M. L. Bissell<sup>3</sup>, K. Blaum<sup>1</sup>, I. Budinčević<sup>3</sup>, B. Cheal<sup>4</sup>, M. De Rydt<sup>3</sup>, R. F. Garcia Ruiz<sup>3</sup>, K. T. Flanagan<sup>4</sup>, N. Frömmgen<sup>5</sup>, G. Georgiev<sup>6</sup>, Ch. Geppert<sup>5,9</sup>, M. Hammen<sup>5</sup>, H. Heylen<sup>3</sup>, M. Kowalska<sup>7</sup>, J. Krämer<sup>5</sup>, K. Kreim<sup>1</sup>, A. Krieger<sup>5</sup>, R. Neugart<sup>5</sup>, G. Neyens<sup>3</sup>, W. Nörtershäuser<sup>5,8</sup>, Ch. Novotny<sup>5</sup>, J. Papuga<sup>3</sup>, M. M. Rajabali<sup>3</sup>, R. Sánchez<sup>8</sup>

 <sup>1</sup>Max Planck Institute for Nuclear Physics, Saupfercheckweg 1, 69117 Heidelberg, Germany <sup>2</sup>INRNE, Bulgarian Academy of Science, BG-1784 Sofia, Bulgaria <sup>3</sup>Instituut voor Kern- en Stralingsfysica, KU Leuven, B-3001 Leuven, Belgium
 <sup>4</sup>School of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, UK <sup>5</sup>Institut für Kernchemie, Universität Mainz, D-55099 Mainz, Germany <sup>6</sup>CSNSM-IN2P3-CNRS, Université de Paris Sud, F-91405 Orsay, France
 <sup>7</sup>Organisation Européenne pour la Recherche Nucléaire, CH-1211 Geneva 23, Switzerland <sup>8</sup>GSI Helmholtzzentrum für Schwerionenforschung GmbH, D-64291 Darmstadt, Germany <sup>9</sup>Helmholtz Institute Mainz, D-55099 Mainz, Germany







Collinear Laser Spectroscopy @ ISOLDE - CERN

## Outline

- Mg: Island of inversion Charge radii by beta detection
- Be: Halo nuclei and N = 8 breakdown Abs. frequency measurements
- *K: Spin measurements* Opt. detection for bunched beams
- Mg: Bio physics <u>NMR in liquids</u>
- Cd: Shell structure from Q moments <u>Frequency quadrupling</u>



eta detection for isotope-shift measurements



#### ISLAND OF INVERSION = ISLAND OF DEFORMATION ?



The "island of inversion" in terms of the SPHERICAL shell model

 $\beta$  detection for isotope-shift measurements



**Proof of principle: fluorescence vs.**  $\beta$  detection on <sup>29</sup>Mg



 $\delta v$  (3s  ${}^{2}S_{1/2}$  - 3p  ${}^{2}P_{1/2}$ )  ${}^{29,26}$  (1GHz / division)



#### $\beta$ detection for isotope-shift measurements

Rms charge radii in the sd shell



Phys. Rev. Lett. 108, 042504 (2012)



### Differential ms radii in the sd shell



Phys. Rev. Lett. 108, 042504 (2012)

MAX-PLANCK-INSTITUT FÜR KERNPHYSIK collinear-anticollinear method with a frequency comb

Halo nuclei



collinear-anticollinear method with a frequency comb



### The simplified Halo picture of <sup>11</sup>Be

# *<sup>11</sup>Be*



W. Nörtershäuser et al., Phys. Rev. Lett. 102, 062503 (2009)



### Measurement of the charge radius of <sup>12</sup>Be



collinear-anticollinear method with a frequency comb



Breakdown of N = 8



A. Krieger et al., Phys. Rev. Lett. 108, 142501 (2012)

collinear laser spectroscopy of potassium



Light collection region designed for K



Bio -  $\beta$  - NMR



### Radioactive Beams for Biophysical Studies



*Project by: <u>Monika Stachura</u>\*, K. Johnston, L. Hemmingsen\*, A. Gottberg \* University of Copenhagen* 

**Physics motivation** 



### Survey of nuclear moments in the Z ≈ 50 region and astrophysical aspects



**Physics motivation** 



Indication for collectivity in the even - even isotopes



Anomaly in the energy levels of <sup>126, 128</sup>Cd

Evidence in the rms charge radii?
Evidence in the Q moments of the neighboring odd isotopes?

**Physics motivation** 



Spins, moments, shapes and isomers in the odd - A isotopes



**Experiment** 



### Bunched-beam fluorescence of <sup>100-130</sup>Cd











**Experimental results** 



Discovery of a long-lived isomeric state in <sup>129</sup>Cd



Isotope shift relative to <sup>114</sup>Cd

**Experimental results** 



Discovery of a long-lived isomeric state in <sup>129</sup>Cd



Isotope shift relative to <sup>114</sup>Cd

**Experimental results** 



Discovery of a long-lived isomeric state in <sup>129</sup>Cd



Isotope shift relative to <sup>114</sup>Cd



Collinear Laser Spectroscopy @ ISOLDE - CERN

## Summary

- Mg: Island of inversion Charge radii by beta detection
- Be: Halo nuclei and N = 8 breakdown <u>Abs. frequency measurements</u>
- K: Spin measurements Opt. detection for bunched beams
- Mg: Bio physics <u>NMR in liquids</u>
- Cd: Shell structure from Q moments <u>Frequency quadrupling</u>





Federal Ministry of Education and Research



