

www.superheavies.de c.e.duellmann@gsi.de

Heaviest elements studied at TASCA

Christoph E. Düllmann

for the TASCA and TASISpec collaborations

PRISMA Cluster of Excellence & Institute of Nuclear Chemistry, Johannes Gutenberg University Mainz SHE Chemistry, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt SHE Chemistry, Helmholtz Institute Mainz

NUSTAR Annual Meeting 2013 GSI Darmstadt, Germany, February 25 – March 01, 2013

Superheavy Elements – Current Status

Ch.E. Düllmann – Heaviest elements studied at TASCA – NUSTAR Annual Meeting 2013 – GSI Darmstadt – Feb. 25 - Mar. 1, 2013

Ch.E. Düllmann – Heaviest elements studied at TASCA – NUSTAR Annual Meeting 2013 – GSI Darmstadt – Feb. 25 - Mar. 1, 2013

The TASCA Collaboration HELMHOLTZ Institute Mainz **UIVERPOOL** UND 兰道代物理所 creer U LBNL/UCB Berkeley (USA) U Jyväskylä (Finland) LLNL Livermore (USA) U Oslo (Norway) Vanderbilt U (USA) Chalmers U Gothenburg (Sweden) **ORNL** Oak Ridge (USA) PSI Villigen/U Berne (Switzerland) U Liverpool (UK) ITE Warschau (Poland) U Surrey (UK) SINP Kolkata (India) U Lund (Sweden) IMP Lanzhou (China) ANU Canberra (Australia) JAEA Tokai (Japan)

Element 120 Cross Sections from Theory

2011: The Hunt for Element 120

Production of Bk-249 Target Material

Julie G. Ezold and Jeff L. Binder Fuel Cycle and Isotope Division Oak Ridge National Laboratory

Slides courtesy of J. Roberto, ORNL

²⁴⁹Bk – Production

Irradiation of Am/Cm-targets in the HFIR @ ORNL

 $\Phi_{thermal}$ at HFIR: 2.5 \times 10^{15} neutrons/cm²·s

- Targets remain in the reactor for approximately 18 months
- 31 target positions (10–13 targets typically irradiated)
- Produces ~35 mg ²⁵²Cf per target (smaller quantities of Bk, Es, Fm)
- Chemical processing of irradiated targets and separation of Bk

Timeline of Berkelium-249 Production

		2010										2011											2012					
	Μ	A	Μ	J	J	A	S	0	Ν	D	J	F	Μ	А	Μ	J	J	А	S	0	Ν	D	J	F	Μ	A	Μ	J
Four targets fabricated																												
Five additional targets fabricated																												
Targets irradiated																												
lodine Decay																												
Target processing																												
Bk available																								(

Bk-249 to be shipped the first week of March 2012

17 Managed by UT-Battelle for the U.S. Department of Energy

Presentation_name

2012: ⁵⁰Ti+²⁴⁹Bk **Agreement 1: 3n exit channel** 4n is larger than 3n **4n exit channel Agreement 2: Position (in E) of maximum** σ / fb Liu + Bao 10 (Möller 1995; FRDM) Wang et al. (Liu 2011; WS3) ▲ Zagrebaev + Greiner (Myers 1996; TF) 1 Siwek-Wilczynska (Muntian 2003) 260 280 290 270 E_{Lab} / MeV

Ch.E. Düllmann – Heaviest elements studied at TASCA – NUSTAR Annual Meeting 2013 – GSI Darmstadt – Feb. 25 - Mar. 1, 2013

2012: Elements 119 / 117 / 115 ⁵⁰Ti beam 750 nA_p and ²⁴⁹Bk targets with initial thickness \approx 0.44 mg/cm². April May June August September July September November October ⁵⁰Ti+²⁴⁹Bk⇒Element 119 ⁴⁸Ca+²⁴³Am⇒Element 115 ⁴⁸Ca+²⁴⁹Bk⇒Element 117

Fingerprinting the SHE - Direct measurement of Z

TASISpec

Highly efficient multi–coincidence spectroscopy set–up for TASCA's very compact focal plane image

1 Implantation DSSSD (1024 pixels) 4 box–DSSSDs (1024 pixels) => ~80% α–detection efficiency

4 Ge Clover (4*4 crystals)
1 Ge Cluster (7 crystals)
=> ~40% γ-detection eff. at 150 keV

L-L Andersson et al., NIM A 622, 164 (2010) L.G. Sarmiento et al., NIM A 667, 26 (2011)

Summary

 TASCA experiments 2011/12: -focus: search for elements 119 / 120 w/ ⁵⁰Ti reactions -check element 117

-direct **Z measurement of** ⁴⁸**Ca+**²⁴³**Am** chains (w/ TASISpec)