

MICHIGAN STATE

F.

R

The spectrometers of FRIB and the corresponding physics program Remco G.T. Zegers

contents

- FRIB, NSCL and the experimental areas
- Spectrometers at NSCL
 - For reaccelerated beams (planned)
 - For fast beams
- Sweeper + MoNA/LISA
- Physics with S800
 - Some recent representative results with relevance for the future program with fast beams at NSCL/FRIB, with a strong bias to charge-exchange reactions
- The choice of beam energy and spectrometer rigidity
- A High-Rigidity Spectrometer for FRIB

The reach of FRIB

- FRIB will greatly extend the reach for studying rare isotopes
 Exciting prospects for study of puclei
- Exciting prospects for study of nuclei along the drip line to A=120(compared to A=24)
- Production of most of the key nuclei for astrophysical modeling

200MeV/u Beam energy (upgrade?)

400 kW Beam power

Spectrometers for reaccelerated beams

Re-accelerator and Associated Beam Lines and Experimental Equipment

Separator for Capture Reactions (SECAR)

Based on design of St. George separator at Notre Dame U.

Collaboration of ANL-CSM-JINA-LSU-McMaster-MSU-ND-ORNL-PNNL

ReAI2 – Recoil separator

Electro-Magnetic Mass Analyzer (EMMA)

VAMOS 🎝

Isochronous Spectrometer with Large Acceptance (ISLA)

Berkeley Gasfilled Separator

Gas-filled separator SASSYER

Spectrometers for fast beams at NSCL

Sweeper Magnet + MoNA-LISA

Primary physics program:

Decay Spectroscopy at and beyond the Neutron Dripline Sweeper: Low-Resolution, Large Acceptance spectrometer

First observation of ²⁶O ground state E. Lunderberg et al., PRL 108, 142503 (2012)

Strong Motivation for spectrometer at FRIB

First observation of ¹³Li Ground State Z. Kohley et al., PRC (Vol. 87, 011304(R))

Gretina

HiRA

S800 Spectrometer

High resolution (dispersion matching) Medium Momentum Acceptance (dp/p=5%) Large Angular Acceptance (20 msr [120x170 mrad]) Bending Angle/Radius 150⁰/2.8 m QQDD layout

TRI-foil PLunger for EXotic beams

LENDA

Physics with the S800 spectrometer: in-beam γ-ray spectroscopy I

- Spectroscopy of the nuclear wave function probing single particle structure
 - Sensitive to hole configurations: One- and two-nucleon knockout reactions
 - Sensitive to particle configurations: C and Be-induced one-nucleon pickup reactions
 - Inelastic scattering

Heavy-ion induced pickup using fast beams with γ -ray tagging S. McDaniel et al., PRC 85, 014610 (2012)

Knockout reactions from p-shell nuclei: Tests of ab initio structure models G.F. Grinyer, et al., PRL106, 162502 (2011)

Physics with the S800 spectrometer: Exploring the collectives degree of freedom in-beam γ -ray spectroscopy II

Studies of Quadupole

Collectivity in Coulomb

excitation of ⁴⁷Ar/⁴⁸Ar

(2012)

- - Excited-state lifetime measurements

Line-shape life-time measurement of ⁷⁶Sr A. Lemasson et al., Phys. Rev. C 85,041303 (R) (2012)

> Tri-foil plunger experiment with GRETINA H. lwasaki et al. (^{74}Kr)

Physics with the S800 spectrometer: in-beam particle-decay spectroscopy

Direct measurement of the ground-state oneproton decay from ⁶⁹Br using the High Resolution Array at the S800

Ground-state proton decay of ⁶⁹Br and implications for the ⁶⁸Se rp process waiting point

A.M. Rogers et al., PRL 106, 252503 (2011)

Relative-energy spectrum for the ${}^{69}\text{Br} \rightarrow p + {}^{68}\text{Se}$ reaction; best fit is achieved assuming a ${}^{69}\text{Br} 3/2^$ ground state with $S_p = -785_{-40} + {}^{34}$ keV

HiRA

Isotope discovery and masses

nickel region via their time of flight A. Estrade et al., PRL 107,172503 (2011)

A/Z

2.7

2.6

20₂

2.5

nuclear charge-exchange reactions as a probe of weak transition strengths

charge-exchange reactions

- spin-isospin response of nuclei at low (structure) and high excitation energies (giant resonances)
- applications in astrophysics (electron-captures, β-decay, neutrino interactions) and astro neutrino physics
- map the isovector part of the nucleon-nucleon effective interaction, including tensor contributions
 From: M.A. Franey and W.G. Love, PRC 31, 488, (19)
- (neutrinoless) double
 β-decay
- different beam energies
- different probes with special selectivity

⁵⁶Ni(p,n) experiment at 110 MeV/u in inverse kinematics

(p,n) in inverse kinematics

Diamond detector Beam particle timing

Liquid Hydrogen target "proton " target

65 mg/cm² (~7 mm) ~3.5 cm diameter T=20 K ~I atm

Low Energy Neutron Detector Array (LENDA) neutron detection

Plastic scintillator 24 bars 2.5x4.5x30cm 150 keV < E_n < 10 MeV $\Delta E_n \sim 5\% \quad \Delta \theta_n < 2^\circ$ efficiency 15-40%

M. Sasano et al., Phys. Rev. Lett. 107, 202501 (2011), Phys. Rev. C 86, 034324 (2012)

Some details

- Reconstruction of excitation energy and scattering angle from detection of slow neutron in LENDA only
- Detection of heavy residual (⁵⁶Cu or one of its decay products) in spectrograph serves as tag for CE reaction.
- Analysis similar to (p,n) experiment in forward kinematics
- required good PID capability in S800, but momentum/angle resolution not as critical.

The RI beam was a cocktail of ⁵⁶Ni and ⁵⁵Co-GT strengths measured from both. Spectrometer not run in dispersion-matched mode

Producing a triton beam for $(t, {}^{3}He)$ experiments

Thin wedge is needed to remove ⁶He (⁹Li) Background channel ⁶He->³He + 3n

1.5

1.0

0.5

0

80

Astrophysical electron-capture rates on pf-shell nuclei

¹²B(⁷Li,⁷Be) in inverse kinematics: configuration mixing around N=8 shell closure

- Knockout, transfer studies probe the sd-component of the ¹²Be 0⁺ state wavefunctions
- Gamow-Teller transitions: $\Delta L=0$, $\Delta S=1$, $0\hbar w$
 - Ground-state of ${}^{12}B(1^+)$ is predominantly 1*p*-shell in nature
 - GT transitions to 0^+ states in ¹²Be probe 1*p*-component of wavefunction
 - B(GT) is a direct reflection of p-shell component of 0^+ states

Experimental setup

Probing configuration mixing with Gamow-Teller strengths

R. Meharchand et al., PRL 108, 122501 (2012)

⁷Li(¹²B,¹²Be^{*})⁷Be^{*}reaction

S800 (dispersion matched)

Segmented Germanium Array

(sensitively tag the reaction channel)

Ratio $B(GT)[0_2^+]/B(GT)[0_1^+]$ is used to extract the $0\hbar\omega$ (p-shell) component of the ${}^{12}Be(0^+)$ states.

Result: $0_1^+: 25\pm5\%$ ($0\hbar\omega$) $0_2^+: 60\pm5\%$ ($0\hbar\omega$); helps resolve long standing debate

Sensitive probe for shell configuration mixing in rare isotopes

R. Meharchand et. al., PRL 108, 122501 (2012)

beam energies

- some physics objectives are best achieved at certain beam energies
- to understand model dependences certain experiments are best performed at several beam energies
- experience with stable beams has often been restricted to a limited set of energies
- kinematical and resolution conditions can constrain the choice of beam energy

experiments with fast beams at spectrometers

- •Elastic (proton) scattering
- decay spectroscopy near the dripline unbound states
- Total absorption measurements
- Knockout/pickup reactions
- •Quasifree scattering reactions such as (p,2p), (p,pn) and (p,pd)
- Charge-exchange and inelastic reactions
- Projectile fragmentation and fission reactions
- Invariant mass spectroscopy

• . . .

Heavy-ion induced electromagnetic excitations

Not all are best performed at FRIB energies... (until energy is upgraded)

Rigidity

Optimum Rigidities for neutron-rich rare isotopes are beyond the capabilities of the S800 and Sweeper magnets.

Slowing down the beams reduces the intensity and increases contaminant and charge-state distributions, and requires reducing the reaction target thickness

FRIB energy upgrade 200 MeV->400 MeV

Fast-beams at FRIB

Possible layout of additional fast-beam experimental areas

A possible HRS@FRIB

	Dipole	Quadrupole Triplet		
	Dipole	Quadrupole I	Quadrupole 2	Quadrupole 3
Bending angle	30 ⁰			
Bending Radius	4.5 m			
Vertical gap	30 cm			
Half Hor. gap	25 cm (C-type)			
Length	2.35 m	50 cm	120 cm	80 cm
Max. B-field	I.6T	2.5 T (pole tip)	-2.3 T (pole tip)	2.I T (pole tip)
Туре	Iron Saturated	Superconducting	Superconducting	Superconducting
Warm bore radius		20 cm	25 cm	25 cm
Pole tip radius		23 cm	28 cm	28 cm

Parameter	S800@FRIB	HRS
Energy resolution	1/2000 (1/10000 with tracking/primary beam)	I/I400 with tracking
Bending Capability	4Tm (beam line 5Tm)	7 Tm
Momentum Acceptance	5%	10%
Angular acceptance	20 msr (120 mrad x 170 mrad)	20 msr (120 mrad x 170 mrad)
Bending angle/radius	I 50º/2.8 m	30º/4.5 m
Layout	QQDD	QQQD
Focal plane detectors	Ion Chamber/CRDCs/plastic scintillators/ Segmented CsI Hodoscope	Ion Chamber/CRDCs/plastic scintillators/ Segmented CsI Hodoscope
Tracking Detectors	Tracking PPACs/Channel Plates/ Segmented Diamond Detectors	Segmented Diamond Detectors
Other devices	SeGA/CAESAR/LENDA/ HiRA/Gretina/Greta	SeGA/CAESAR/LENDA/ Gretina/Greta/MoNA-LISA

summary

- Development of next generation spectrometers for experiments with fast and reaccelerated beams at NSCL and FRIB in progress
- Concepts for a new high-rigidity spectrometer for FRIB are being studied
- Experimental approaches at a variety of beam energies and with a variety of techniques are complementary and all are needed to accomplish a wide range a physics objectives with modern facilities