Hypernuclei: Spectroscopy with heavy ion beams

Take R. Saito

GSI Helmholtz Center for Heavy Ion Research, Helmholtz Institute Mainz and

Mainz University

Hypernuclei: Laboratory for baryon-baryon interaction with hyperon

S

d

S

d

S

S

S

Ξ

 Σ^{-}

S

Baryon-baryon interaction with u-, d- and s-quarks

- Towards hyperon(Y)-nucleon(N) and Y-Y interaction
- Comprehensive understanding of nuclear force under SU(3)_f
- Input for theories describing the nature of neutron stars

Are Y-N and Y-Y scattering experiments possible?

- No hyperon target available: $\tau_y \sim 10^{-10} s$
- Difficulty to study low energy interaction with
 - Very high energy hyperon beams: CERN WA89 and SELEX
 - Hyperon production experiments

Impossible to deduce precise YN interactions Not possible for YY interactions

Using hypernuclei as a micro-laboratory

Coalescence of Λ in projectile fragments
 (π⁺, K⁺) reactions in projectile fragments

■ NN -> AKN : Energy threshold ~ 1.6 GeV

- Heavy ion beams with E > 1.6 A GeV needed
 - Stable heavy ion beam at GSI
 - Stable heavy ion beam at FAIR
 - RI-beam from FRS and super-FRS

Accessible to neutron- and proton rich hypernuclei

Other exotic searches also possible

Relativistic hypernuclei

Projectile fragment

Large Lorentz factor γ (>3)
 Effective lifetime : Longer by the Lorentz factor 200 ps -> 600 ps at GSI (ct ~ 20 cm) 200 ps -> 4 ns at FAIR (ct ~ 120 cm)

Hypernuclear separation and spin precession

- Can be feasible with 20 Tm at 20 A GeV
- Large spin precession in magnetic fields
 - 225 degrees with free- Λ magnetic moment

Nuclear matter with multiple-strangeness

6 2 15212

C. Rappold, PhD thesis

HypHI Phase 0 in October 2009

The goal of the Phase 0 experiments

 To demonstrate the feasibility of precise hypernuclear spectroscopy with ⁶Li primary beams at 2 A GeV : Mesonic decay Λ -> π⁻ + p

$${}^{3}{}_{\Lambda}H \rightarrow \pi^{-} + {}^{3}He$$

 ${}^{4}{}_{\Lambda}H \rightarrow \pi^{-} + {}^{4}He$
 ${}^{5}{}_{\Lambda}He \rightarrow \pi^{-} + {}^{4}He + p$

Funding

Helmholtz-University Young Investigators Group VH-NG-239, 2006-2012
DFG grant SA1696/1-1

2007-2009, TOF detectors

Phase 0 setup

Phase 0 setup

Analysis for Phase O

- Independent calibrations for each detector
- Track-candidate finding and calibrations
- Track fitting: Kalman filter
- Particle ID
 - dE/dx in TOF+
 - TOF with TOF+ and TFW
 - Momentum from tracking
- Decay vertex
 - Pairs of corresponding tracks
 - Minimum track distance: < 4 mm</p>
 - Longitudinal vertex position
- Directional cut
- **Momentum cut for** π^- : > 0.4 GeV/c
- Estimation of combinatorial background
 - Mix different events from data

C. Rappold, D. Nakajima, E. Kim, PhD thesis, NPA 881 (2012) 218, C. Rappold to be published

Analysis with BDC

E. Kim, PhD thesis, NPA 881 (2012) 218

Latest Results: $\Lambda \rightarrow p + \pi^{-}$

Statistical analysis of ∧ invariant mass
 (-100 mm < Vertex Z < 300 mm) with RooStats and RooFit package
 Fitting model = n_s (Gaus: sig_m, sig_s) + n_b (Chebychev: a0, a1, a2)

Fit to the signal + background model \triangleright

Fit to the background-only model \rightarrow

Latest Results: $\Lambda \rightarrow p + \pi^{-}$

Statistical analysis of ∧ invariant mass
 (-100 mm < Vertex Z < 300 mm) with RooStats and RooFit package
 Fitting model = n_s (Gaus: sig_m, sig_s) + n_b (Chebychev: a0, a1, a2)

Fit to the signal + background model \rightarrow

Significance♪

Latest Results: ${}^{3}_{\Lambda}H \rightarrow {}^{3}He + \pi^{-}$

Latest Results: ${}^{3}_{\Lambda}H \rightarrow {}^{3}He + \pi^{-}$

Statistical analysis of Λ invariant mass (-100 mm < Vertex Z < 300 mm) with RooStats and RooFit package Fitting model = n_s (Gaus: sig_m, sig_s) + n_b (Chebychev: a0, a1, a2)

Fit to the signal + background model \triangleright

Significance♪

E. Kim, PhD thesis, C. Rappold to be published

3.04

Latest Results: ${}^{4}_{\Lambda}H \rightarrow {}^{4}He + \pi^{-}$

Latest Results: ${}^{4}_{\Lambda}H \rightarrow {}^{4}He + \pi^{-}$

Statistical analysis of ∧ invariant mass
 (-100 mm < Vertex Z < 300 mm) with RooStats and RooFit package
 Fitting model = n_s (Gaus: sig_m, sig_s) + n_b (Chebychev: a0, a1, a2)

Fit to the signal + background model \rightarrow

Significance♪

Lifetime

Signal region: peak position $\pm 2\sigma$

- Sideband subtraction: 2σ in both sides
- Acceptance from the full Monte Carlo simulations

Lifetime

Signal region: peak position $\pm 2\sigma$

Sideband subtraction: 2σ in both sides

Acceptance from the full Monte Carlo simulations

Unbinned maximum likelihood fitting Probability Density Function PDF for the exponential decay

 $P(x)=rac{1}{ au}e^{-rac{x}{ au}}$

If NOT normalized, the likelihood function is

 $L(x_i) = rac{e^{-\mu}\mu^n}{n!} \prod_i \left(rac{1}{ au} e^{-rac{x_i}{ au}}
ight)$

With scaling factors (acceptance and efficiency)

$$egin{aligned} n &= a \sum_i w_i \ L(x_i) &= rac{e^{-\mu} \mu^a \sum w_i}{(a \sum w_i)!} \prod_i \left(rac{1}{ au} e^{-rac{x_i}{ au}}
ight)^{aw_i} \end{aligned}$$

Unbinned maximum likelihood fitting

Log of the likelihood

$$log(L(x_i)) = -\mu + log(\mu)a\sum w_i - log(\Gamma(a\sum w_i + 1) + log\left(\frac{1}{\tau}\right) - \frac{1}{\tau}\sum x_iw_i$$

Partial differentiation of Log(L) on τ

$$rac{\partial log(L(x_i))}{\partial au} = -rac{a}{ au}\sum w_i + rac{a}{ au^2}\sum x_i w_i = 0$$

$$\tau = \frac{\sum x_i w_i}{\sum w_i}$$

Partial differentiation of Log(L) on μ

$$rac{\partial log(L(x_i))}{\partial \mu} = -1 + rac{a}{\mu} \sum w_i = 0$$

$$\mu = a \sum w_i = n$$

Unbinned maximum likelihood fitting

Analysis <u>without</u> BDC, but with vertex fitting

Tracking layers

- In front of the bending magnet:
 - Fiber detectors, TR1 and TR2
- Behind the bending magnet
 - Drift chamber SDC and TOF walls

Vertex fitting Better selectivity

O. Bertini, Ph.D. thesis

Invariant mass distributions with vertex fitting

O. Bertini, Ph.D. thesis

Some final states:

NOT observed so far in the other experiments

Latest Results: ??? -> d + π^-

Latest Results: ??? -> d + π^-

Statistical analysis of Λ invariant mass (-100 mm < Vertex Z < 300 mm) with RooStats and RooFit package Fitting model = n_s (Gaus: sig_m, sig_s) + n_b (Chebychev: a0, a1, a2)

Fit to the signal + background model \triangleright

Significance♪

mass (GeV)

Latest Results: ??? -> t + π^-

Latest Results: ??? -> t + π^-

Statistical analysis of Λ invariant mass (-100 mm < Vertex Z < 300 mm) with RooStats and RooFit package Fitting model = n_s (Gaus: sig_m, sig_s) + n_b (Chebychev: a0, a1, a2)

 $= 143\pm64$ 80 2.8 MeV 60 40 Counts / 20 3.02 3.04

3

Mass (GeV)

2.98

Fit to the signal + background model \triangleright

Lifetime

Signal region: peak position ± 2σ

Sideband subtraction: 2σ in both sides

Acceptance from the full Monte Carlo simulations

d+ π^- and t+ π^- from MC

UrQMD + Full MC simulations
 No source for d+π⁻ and t+π⁻ peaks

Possible miss-reconstructions

 $^{3}_{\Lambda}H -> ^{3}He^{*} + \pi^{-}$

->p + d

- ${}^{3}_{\Lambda}H \rightarrow p + {}^{3}He$: branch = 0.379*2/3 = 0.25
- ³_AH -> p- + p + d: branch = 0.619*2/3 = 0.412
- Observed ${}^{3}_{\Lambda}H \rightarrow \pi^{-} + {}^{3}He : 129$
- Estimated π -+d from ${}^{3}_{\Lambda}H$: 7 counts
- **6** $_{\Lambda}$ He -> 6 Li* + π^{-}

 $->^{4}He + d$

- Upper limit: 8 counts
- R(3-body)/R(2-body)=5 (from A. Gal)
- Estimated π -+d from ${}^{6}_{\Lambda}$ He: 3 counts
- **4** $_{\Lambda}H$ -> $^{4}He^{*}$ + π^{-}

->p + 🕇

- Observed ${}^{4}_{\Lambda}H \rightarrow \pi^{-} + {}^{4}He$: 122
- R(3-body)/R(2-body)=1 (Assumption)
- Estimated π -+t from ${}^{4}_{\Lambda}$ H: 13 counts

Observed d+ π^{-} : 212 **Observed t**+ π^{-} : 172

Is the d+ π^- signal from n Λ ??

Observed mass range: crossing the mass of $n+\Lambda$

No pA bound state observed with emulsion experiments
 Scattering length of pA at COSY

• We also observe the $t+\pi^-$ signal

Further experimental confirmation
 Analysis of Phase 0.5 (²⁰Ne on ¹²C)

Future of HypHI????

- We planed to continue HypHI with the ALADIN magnet in cave B
- Cave B and the ALADIN magnet will not be available
- With super-FRS, we can continue HypHI with R3B magnet

Possibility with FRS

Possibility with FRS

Setup with SKS-Plus magnet from KEK

With FRS/super-FRS

RI-beam production + spectrometer

Confirmation on the t+π⁻ and d+π⁻ invariant mass signals
 Direct information on the hyperon driven three body force by the ΔN-ΣN coupling

Momentum scan for tritons

Expected $t+\pi^{-}$ invariant mass

With FRS/super-FRS

RI-beam production + spectrometer

Confirmation on the t+ π^- and d+ π^- invariant mass signals

- Direct information on the hyperon driven three body force by the $\Lambda N\mathcal{N}\mathcal{S}L$ coupling
- Lifetime measurement
 - Independent to the time resolution of detector
 - $\Lambda N-\Sigma L$ coupling on isospin and mass values

Present hypernuclear landscape

Known hypernuclei

${}^{3}_{\Lambda}H$ and ${}^{4}_{\Lambda}H$

217⁺¹⁹₋₁₆ ps

191⁺²⁰₋₁₈ ps

C. Rappold to be published

With FRS/super-FRS

RI-beam production + spectrometer

Confirmation on the t+ π^- and d+ π^- invariant mass signals

• Direct information on the hyperon driven three body force by the $\Lambda N\mathcal{N}\mathcal{S}L$ coupling

Lifetime measurement

- Independent to the time resolution of detector
- $\Lambda N-\Sigma L$ coupling on isospin and mass values

Exotic hypernuclei

- Modification of stability of nuclei by inducing strangeness
- For example: ${}^{8}_{\Lambda}Be \rightarrow {}^{8}B + \pi^{-}$

For ⁸_ABe

Summary

HypHI: with heavy ion beams
 A new doorway to study hypernuclei

Phase 0 experiment with ⁶Li + ¹²C

- Successfully demonstrated the feasibility
- Λ , ${}^{3}_{\Lambda}H$, ${}^{4}_{\Lambda}H$
- Shorter lifetime of ${}^3_{\Lambda}H$ and ${}^4_{\Lambda}H$
- Additional signals: $d+\pi^-$ and $t+\pi^-$

New ideas with FRS/super-FRS

