Progress of NUSTAR Instrumentation

J. Gerl GSI Darmstadt, Germany

NUSTAR Annual Meeting

GSI Darmstadt

27.2.2013

NUSTAR - The Project

DESPEC	γ-, β-, α-, p-, n-decay spectroscopy	
ELISE	elastic, inelastic, and quasi-free e ⁻ -A scattering	
EXL	light-ion scattering reactions in in invere kinematics	
HISPEC	in-beam γ spectroscopy at low and intermediate energy	
ILIMA	masses and lifetimes of nuclei in ground and isomeric states	
LASPEC	Laser spectroscopy	
MATS	in-trap mass measurements and decay studies	
R3B	kinematically complete reactions at high beam energy	
Super FRS	RIB production, identification and spectroscopy	

The Approach

Complementary measurements leading to consistent answers

The Collaboration

> 800 scientists

146 institutes

38 countries

The Investment

82 M€ Super FRS

73 M€ Experiments

Requires LEB Cave!!!

The Penning-trap system TRIGA-TRAP

The Penning-trap system TRIGA-TRAP

Many important physics rersults obtained already!

LASPEC at the LEB

D. Rodriguez, EPJ Special Topics 183 (2010) 1-123

LASPEC Beamline available

Beamline completed

Off-line comissioning

Charge exchange cell comparison

Optical detection region improvements ongoing

New tools for ion beam analysis under development

On-line comissioning awaiting

Foreseen instrumentation for Spectroscopy

HISPEC

- -LYCCA heavy ion calorimeter with ToF capability
- -AGATA gamma spectrometer
- -HYDE light particle array
- -NEDA Neutron detector array
- -EDAQ dedicated electronics and DAQ based on several branches

DESPEC

- -AIDA active implantation device
- -MONSTER neutron ToF array
- -BELEN neutron detection array
- -DTAS Decay Total Absorption Spectrometer
- -DESPEC Ge Array gamma spectrometer
- -FATIMA Fast timing array
- -EDAQ dedicated electronics and DAQ based on several branches

AIDA - Advanced Implantation Detector Array

Detector:

multi-plane Si DSSD array wafer thickness 1mm 8cm x 8cm (128x128 strips) *or* 24cm x 8cm (384x128 strips)

TDR long ago...

Instrumentation:

ASIC

low noise (<12keV FWHM), low threshold (0.25% FSR) 20GeV FSR *plus* (20MeV FSR *or* 1GeV FSR) fast overload recovery (~µs) spectroscopy performance time-stamping

advanced EDAQ

The DESPEC MOdular Neutron SpectromeTER

MONSTER will be used to determine the energy spectra and emission probabilities of β delayed neutrons with high resolution.

200 de 10cm	tectors, radius	ΔE/E @ 1 MeV					
TOF distance (m)	Geometri c efficiency	1ns	4ns				
2	12.5%	3.5%	6.0%				
3	5.6%	2.5%	4.2%				

Initial quality problems solved 30 detectors delivered to CIEMAT

Prototype development for own production at VECC Kolkata ongoing.

Tests with neutron performed successfully at Bruyeres Le Chatel

Decay Total Absorption Spectrometer (DTAS)

Successful Commissioning

Kr+Be

R3B at the HEB

CALIFA

NeuLAND

TDR submitted in 2012 and accepted!

20% version in construction for in-beam run in 2014

excellent multi-neutron capability

		200 MeV					1		600 MeV							1000 MeV										
		generated					generated							generated												
	%	1n	2n	3n	4n	5n		%	1n	2n	3n	4n	5n		%	1n	2n	3n	4n	5n						
detected	1n	88	31	6	1	0	1n	92	22	2	0	0		1n	89	12	1	0	0							
	2n	2	62	37	10	2	2 14 54 26 3							2n	2	71	32	7	1		2n	7	78	23	3	0
	3n	0	5	49	38	14		3n	0	6	55	32	9	tec	3n	0	8	63	26	5						
	4n	0	0	8	48	54		4n	0	0	10	57	50	tec	4n	0	0	12	63	40						
	5n	0	0	0	3	26		5n	0	1	1	4	35	de	5n	0	0	0	7	46						
	6n	0	0	0	0	3		6n	0	0	0	0	5		6n	0	0	0	0	8						

Details of the EXL setup

Vacuum solution with DSSDs

[courtesy : B. Streicher (KVI/GSI) and M. Mutterer (GSI)]

p-side (21x21 mm²) DSSD 64x64 strips AlN PCB (ceramic – UHV) good heat conductivity < 5µm roughness after polishing

Pressure auxiliary vacuum [mbar] Streicher et al., NIM A 654 (2011) 604

Mechanical engineering

Commissioned and operated at the ESR at GSI

Conclusions

- Most sub-system designs are ready
- Many prototypes exist
- Early implementations of major sub-systems are being tested
- First sub-systems are completed in their final version
- Some sub-systems are already being exploited for experiments
- Commissioning and physics campaigns provide valuable information
- Experimental methods and analysis algorithms are steadily improving

Most NUSTAR experiments are able to perform day-one experiments within one or two years.

Test and commssioning at GSI as host laboratory is a critical issue

Funding of fully completed sub-systems in most cases not yet secured

NUSTAR EDAQ and common infrastructure needs to be tackled now

NUSTAR Instrumentation is in a very good shape