Three-nucleon forces and exotic nuclei

Javier Menéndez

Institut für Kernphysik (TU Darmstadt) and ExtreMe Matter Institute (EMMI)

with Jason D. Holt (TU Darmstadt/EMMI), Achim Schwenk (EMMI/TU Darmstadt) and Johannes Simonis (TU Darmstadt/EMMI)

NUSTAR Annual Meeting, GSI, 28 February 2013

Outline

Theoretical Approach: NN+3N forces in Shell Model

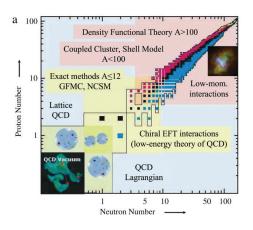
The nuclear interaction: need of 3N forces Shell Model interactions with microscopic chiral NN+3N forces

Results for exotic nuclei

Neutron rich O isotopes Neutron rich Ca isotopes Proton rich N=8 and N=20 isotopes

Outline

Theoretical Approach: NN+3N forces in Shell Model


The nuclear interaction: need of 3N forces Shell Model interactions with microscopic chiral NN+3N forces

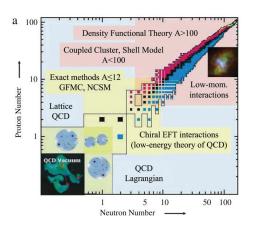
Results for exotic nuclei

Neutron rich O isotopes Neutron rich Ca isotopes Proton rich N=8 and N=20 isotopes

The Nuclear interaction

Ideally, QCD interaction (Latice QCD) \Rightarrow Hard problem: QCD non-perturbative at low energy

Alternatively, bare NN potential (spirit of Shell Model) ⇒ Drawback:


manipulate the interaction to solve the many-body nuclear problem

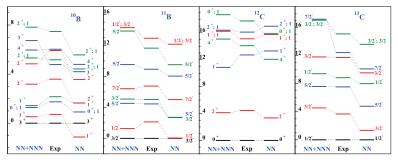
Finally, use selected nuclei (Energy Density Functionals) ⇒ Drawback: loss of predictive power

The Nuclear interaction

TECHNISCHE UNIVERSITÄT DARMSTADT

Ideally, QCD interaction (Latice QCD) ⇒ Hard problem: QCD non-perturbative at low energy

Alternatively, bare NN potential (spirit of Shell Model) ⇒ Drawback: manipulate the interaction to solve the many-body nuclear problem


Finally, use selected nuclei (Energy Density Functionals) ⇒ Drawback: loss of predictive power

Limitation of NN potentials

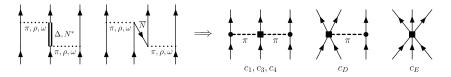
TECHNISCHE UNIVERSITÄT DARMSTADT

Ab initio calculations (No Core Shell Model) with perfect NN potentials (AV18) fail to reproduce light nuclei spectra

Navratil et al. PRL99 042501(2007)

⇒ Confirms experience of Shell Model (monopole adjustments)

Need of 3N forces



TECHNISCHE UNIVERSITÄT DARMSTADT

Need 3N forces!

Zuker PRL90 042502 (2003)

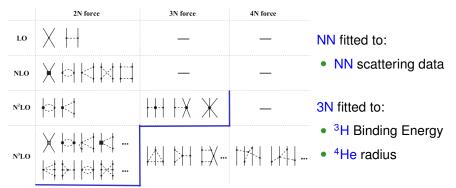
3N forces originate in the elimination of degrees of freedom (N-body forces appear in any effective theory) Bogner, Schwenk, Furnstahl PPNP65 94 (2010)

But few NNN scattering data available!

 \Rightarrow Need a framework that, in a natural manner, describes 3N forces consistent with NN forces

Chiral EFT

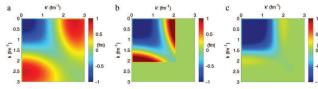
- Chiral EFT is a low energy approach to QCD valid for nuclear structure energies
- Exploits approximate chiral symmetry of QCD: pions are special particles (pseudo-Goldstone bosons)
- Nucleons interact via pion exchanges and contact interactions (physics non-resolved at nuclear structure energies)
- Enables a systematic basis for strong interactions, expansion in powers of Q/Λ_b $Q \sim m_{\pi}$, typical momentum scale $\Lambda_b \sim 500$ MeV, breakdown scale
- Systematic expansion naturally includes NN, 3N, 4N... forces (at different orders)
- Short-range couplings are fitted to experiment once


Chiral EFT NN+3N forces

TECHNISCHE UNIVERSITÄT DARMSTADT

Systematic expansion: state-of-the-art chiral EFT forces

- NN forces included up to N³LO
- 3N forces included up to N²LO



Weinberg, van Kolck, Kaplan, Savage, Wise, Epelbaum, Kaiser, Meißner...

Many Body Perturbation Theory

TECHNISCH UNIVERSITÄ DARMSTAD

Better convergence through V_{lowk} transformation

Single Particle Energies (SPEs)

Two-Body Matrix Elements (TBMEs)

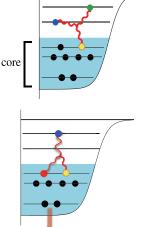
Many-body Perturbation Theory up to third order to build an effective Shell Model interaction in a valence space

Full diagonalizations using codes ANTOINE and NATHAN Caurier et al. RMP77 427(2005) and compare to experiment

3N Forces

Treatment of 3N forces:

normal-ordered 2B: 2 valence, 1 core particle \Rightarrow (effective) Two-body Matrix Elements (TBME)


normal-ordered 1B: 1 valence, 2 core particles \Rightarrow (effective) Single particle energies (SPE)

$$(-+-1)(\times -1)(\times)$$

↓--**↓ ↓ ↓**

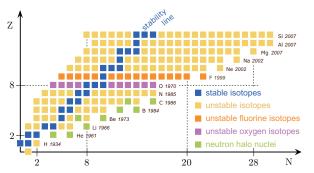
residual 3B:

 \Rightarrow Estimated to be suppressed by $N_{valence}/N_{core}$

Outline

Theoretical Approach: NN+3N forces in Shell Model

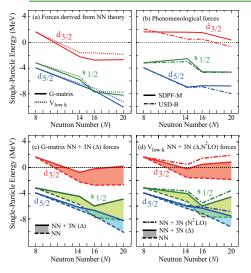
The nuclear interaction: need of 3N forces Shell Model interactions with microscopic chiral NN+3N forces


Results for exotic nuclei

Neutron rich O isotopes Neutron rich Ca isotopes Proton rich N=8 and N=20 isotopes

O isotopes: dripline anomaly

O isotopes: 'anomaly' in the dripline at ²⁴O, doubly magic nucleus



Theoretical calculations predict the dripline at ²⁶O or ²⁸O: a fit to this property is needed to correctly reproduce experiment (e.g. USD interactions, EDFs)

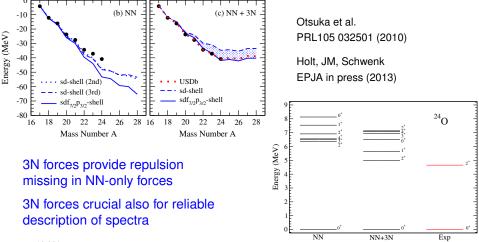
O isotopes: effective SPE's

TECHNISCHE UNIVERSITAT DARMSTADT

Evolution of $d_{3/2}$ orbit (and to a less extent $s_{1/2}$ and $d_{5/2}$ orbits) incorrectly predicted by NN forces

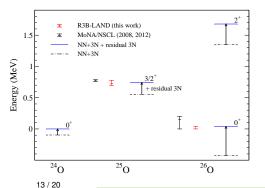
Phenomenological interactions include further repulsive contributions

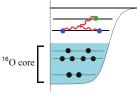
The effect of 3N forces is similar to phenomenological 'cures'


Otsuka et al. PRL105 032501 (2010)

O isotopes: masses and spectra

TECHNISCHE UNIVERSITÄT DARMSTADT

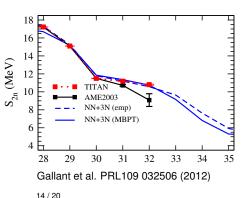

Chiral NN+3N forces give the correct picture for masses and spectra



Residual 3N Forces

In the most neutron-rich oxygen isotopes, 3N forces between 3 valence neutrons (remember, suppressed by $N_{valence}/N_{core}$) can give a relevant contribution

Residual 3N contributions are repulsive


They are small compared to normal-ordered 3N force, but increase with N

Very good agreement with resonances in ²⁵O and ²⁶O

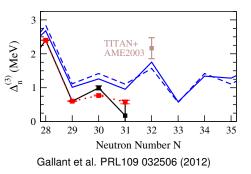
Caesar, Simonis et al, arXiv:1209.0156

Compare S_{2n} theoretical calculations with experimental results

$$S_{2n} = -[B(N,Z) - B(N-2,Z)]$$

New precision measurements change previous slope from AME 2003 \sim 2 MeV change in ⁵²Ca!

Very good agreement between calculation and experimental trend (Similar level as phenomenological interactions)


Two sets of spe's, empirical and calculated, in $pfg_{9/2}$ valence space

Nuclear Pairing Gaps

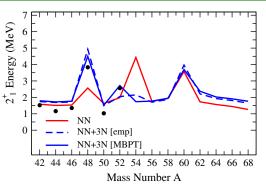
Compare also to experimental three-point mass differences:

$$\Delta_n^{(3)} = \frac{(-1)^N}{2} [B(N+1,Z) + B(N-1,Z) - 2B(N,Z)]$$

The experimental trend is very well reproduced by theory

Theoretical results systematically 0.5 MeV higher than experiment

Prediction of sub-shell closure candidates N = 32 (moderate closure) and N = 34 (no apparent closure)



Shell closures in Ca isotopes

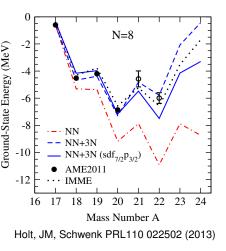
2⁺₁ energies characterize shell closures of Ca isotopes

Closure at N = 28with 3N forces in $(pfg_{9/2})$ Holt et al. JPG39 085111(2012)

Holt, JM, Schwenk, to be submitted

3N forces enhance closure at N = 32 (more moderate than N = 28)

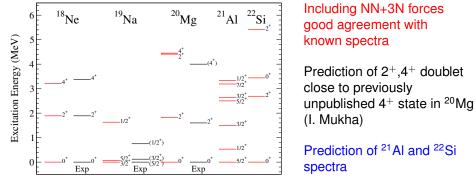
3N forces reduce strong closure at N = 34 (no apparent closure)


Predicted shell closure at N = 60, unaffected by 3N forces (but continuum missing in our calculations!)

16 / 20

Proton dripline at N = 8

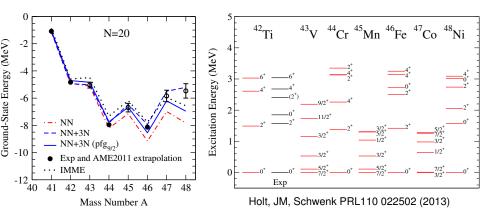
Theory complements/improves mass extrapolations and isomeric mass-multiplet formula (IMME) $E(A, T, T_z) = E(A, T, -T_z) + 2b(A, T)T_z$


NN forces oberbind 3N forces essential to describe masses and the predict the proton dripline

Proton dripline not certain predicted either in 20 Mg or 22 Si: S_{2p} = -0.12 (Theory) / +0.01 (IMME) Measurement needed!

Calculations in standard and extended spaces

Spectra of N = 8 isotones


Holt, JM, Schwenk PRL110 022502 (2013)

In ^{22}Si calculations point to a sub-shell closure (analogous to $^{22}O)$

More experimental information greatly appreciated!

Masses and spectra of N = 20 isotones

Dripline robustly predicted at ⁴⁶Fe

Good description of ⁴⁸Ni: S_{2p} = -1.02 (Th) vs -1.28(6) (Exp) Pomorski (2012)

Summary and Outlook

TECHNISCHE UNIVERSITÄT DARMSTADT

Shell Model calculation based on chiral EFT (NN+3N forces) and MBPT gives good agreement with experimental masses, two-neutron separation energies, pairing gaps and excitation spectra for oxygen, calcium isotopes and proton-rich N=8,20 isotones:

- Neutron rich O masses and spectra reproduced with NN+3N forces
- Residual 3N forces needed for very neutron-rich ^{25,26}O
- Predicted neutron rich Ca S_{2n}'s agree with recent measurements
- Ca pairing gaps and spectra (shell closures) including NN+3N forces
- Dripline and spectra of proton-rich N = 8, 20 isotones predicted

Outlook:

Explore heavier isotope and isotone chains: include T=0 TBME Explore uncertainties in the theoretical calculation