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The Nuclear interaction

Ideally, QCD interaction
(Latice QCD)
⇒ Hard problem:
QCD non-perturbative at low energy

Alternatively, bare NN potential
(spirit of Shell Model)
⇒ Drawback:
manipulate the interaction to solve
the many-body nuclear problem

Finally, use selected nuclei
(Energy Density Functionals)
⇒ Drawback:
loss of predictive power
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Limitation of NN potentials

Ab initio calculations (No Core Shell Model) with perfect NN potentials
(AV18) fail to reproduce light nuclei spectra

Navratil et al. PRL99 042501(2007)

⇒ Confirms experience of Shell Model (monopole adjustments)
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Need of 3N forces

Need 3N forces!
Zuker PRL90 042502 (2003)

3N forces originate in the elimination of degrees of freedom
(N-body forces appear in any effective theory)
Bogner, Schwenk, Furnstahl PPNP65 94 (2010)

But few NNN scattering data available!

⇒ Need a framework that, in a natural manner, describes
3N forces consistent with NN forces
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Chiral EFT

• Chiral EFT is a low energy approach to QCD
valid for nuclear structure energies

• Exploits approximate chiral symmetry of QCD:
pions are special particles (pseudo-Goldstone bosons)

• Nucleons interact via pion exchanges and contact interactions
(physics non-resolved at nuclear structure energies)

• Enables a systematic basis for strong interactions,
expansion in powers of Q/Λb
Q ∼ mπ, typical momentum scale
Λb ∼ 500 MeV, breakdown scale

• Systematic expansion naturally includes NN, 3N, 4N... forces
(at different orders)

• Short-range couplings are fitted to experiment once
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Chiral EFT NN+3N forces
Systematic expansion: state-of-the-art chiral EFT forces

• NN forces included up to N3LO

• 3N forces included up to N2LO

NN fitted to:

• NN scattering data

3N fitted to:

• 3H Binding Energy

• 4He radius

Weinberg, van Kolck, Kaplan, Savage, Wise, Epelbaum, Kaiser, Meißner...
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Many Body Perturbation Theory

Better convergence through
Vlowk transformation

Many-body Perturbation Theory
up to third order to build
an effective Shell Model interaction
in a valence space

Single Particle Energies
(SPEs)

Two-Body Matrix Elements
(TBMEs)

Full diagonalizations using codes ANTOINE and NATHAN
Caurier et al. RMP77 427(2005) and compare to experiment
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3N Forces
Treatment of 3N forces:

normal-ordered 2B: 2 valence, 1 core particle
⇒ (effective) Two-body Matrix Elements (TBME)

normal-ordered 1B: 1 valence, 2 core particles
⇒ (effective) Single particle energies (SPE)

'b'

residual 3B:
⇒ Estimated to be suppressed by Nvalence/Ncore

O core

'b'

9 / 20



Outline

Theoretical Approach:
NN+3N forces in Shell Model

The nuclear interaction: need of 3N forces
Shell Model interactions with microscopic chiral NN+3N forces

Results for exotic nuclei
Neutron rich O isotopes
Neutron rich Ca isotopes
Proton rich N=8 and N=20 isotopes



O isotopes: dripline anomaly

O isotopes: ’anomaly’ in the dripline at 24O, doubly magic nucleus
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Theoretical calculations predict the dripline at 26O or 28O:
a fit to this property is needed to correctly reproduce experiment
(e.g. USD interactions, EDFs)
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O isotopes: effective SPE’s
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incorrectly predicted by NN forces

Phenomenological interactions
include further repulsive
contributions

The effect of 3N forces is similar to
phenomenological ’cures’

Otsuka et al. PRL105 032501 (2010)
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O isotopes: masses and spectra
Chiral NN+3N forces give the correct picture for masses and spectra
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3N forces provide repulsion
missing in NN-only forces

3N forces crucial also for reliable
description of spectra
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Residual 3N Forces

In the most neutron-rich oxygen isotopes,
3N forces between 3 valence neutrons
(remember, suppressed by Nvalence/Ncore)
can give a relevant contribution
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Residual 3N contributions are
repulsive
They are small compared to
normal-ordered 3N force, but
increase with N
Very good agreement with
resonances in 25O and 26O

Caesar, Simonis et al, arXiv:1209.0156
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Ca isotopes: 2n separation energies

Compare S2n theoretical calculations with experimental results

S2n = −[B(N,Z )− B(N − 2,Z )]
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New precision measurements change
previous slope from AME 2003
∼ 2 MeV change in 52Ca!

Very good agreement between
calculation and experimental trend
(Similar level as
phenomenological interactions)

Two sets of spe’s, empirical and
calculated, in pfg9/2 valence space
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Nuclear Pairing Gaps

Compare also to experimental three-point mass differences:

∆
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The experimental trend is very well
reproduced by theory

Theoretical results systematically
0.5 MeV higher than experiment

Prediction of sub-shell closure
candidates N = 32 (moderate closure)
and N = 34 (no apparent closure)
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Shell closures in Ca isotopes

2+
1 energies

characterize shell closures
of Ca isotopes

Closure at N = 28
with 3N forces in (pfg9/2)
Holt et al. JPG39 085111(2012)
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3N forces enhance closure at N = 32 (more moderate than N = 28)

3N forces reduce strong closure at N = 34 (no apparent closure)

Predicted shell closure at N = 60, unaffected by 3N forces
(but continuum missing in our calculations!)
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Proton dripline at N = 8
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Theory complements/improves
mass extrapolations and
isomeric mass-multiplet formula (IMME)
E(A,T ,Tz) = E(A,T ,−Tz) + 2b(A,T )Tz

NN forces oberbind
3N forces essential to describe masses
and the predict the proton dripline

Proton dripline not certain
predicted either in 20Mg or 22Si:
S2p= -0.12 (Theory) / +0.01 (IMME)
Measurement needed!

Calculations in standard
and extended spaces
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Spectra of N = 8 isotones
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Including NN+3N forces
good agreement with
known spectra

Prediction of 2+,4+ doublet
close to previously
unpublished 4+ state in 20Mg
(I. Mukha)

Prediction of 21Al and 22Si
spectra

Holt, JM, Schwenk PRL110 022502 (2013)

In 22Si calculations point to a sub-shell closure (analogous to 22O)

More experimental information greatly appreciated!
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Masses and spectra of N = 20 isotones
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Holt, JM, Schwenk PRL110 022502 (2013)

Dripline robustly predicted at 46Fe

Good description of 48Ni: S2p= -1.02 (Th) vs -1.28(6) (Exp) Pomorski (2012)
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Summary and Outlook

Shell Model calculation based on chiral EFT (NN+3N forces)
and MBPT gives good agreement with experimental masses,
two-neutron separation energies, pairing gaps and excitation spectra
for oxygen, calcium isotopes and proton-rich N=8,20 isotones:

• Neutron rich O masses and spectra reproduced with NN+3N forces

• Residual 3N forces needed for very neutron-rich 25,26O

• Predicted neutron rich Ca S2n’s agree with recent measurements

• Ca pairing gaps and spectra (shell closures) including NN+3N forces

• Dripline and spectra of proton-rich N = 8,20 isotones predicted

Outlook:

Explore heavier isotope and isotone chains: include T=0 TBME

Explore uncertainties in the theoretical calculation
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