

Isospin symmetry in the *sd* shell: – Coulomb excitation of ³³Ar – and the new 'Lund-York-Cologne-Calorimeter'

- Isospin symmetry in the sd shell
- The Lund-York-Cologne-Calorimeter
- Analysis of the ³³Ar Coulex-experiment
- Results and comparison to SM calculations

NUSTAR Annual Meeting Darmstadt, 28.02.2013 University of Cologne Andreas Wendt

Isospin formalism

Proton und neutron: similar mass and affected in similar way by nuclear interaction

",nucleons" in different states, characterised by isospin t = $\frac{1}{2}$.

 $t_z(proton) = -\frac{1}{2}$ $t_z(neutron) = +\frac{1}{2}$

 $T_{z} = (N - Z)/2$ $T = t_{1} \oplus t_{2} \oplus \dots t_{n} \Longrightarrow \frac{|N - Z|}{2} \le T \le \frac{N + Z}{2}$

D. D. Warner, M. A. Bentley und P. Van Isacker, Nature Phys. 2, 311 (2006).

												2	32	in N2	
											1			N=Z	
														T _z =+1	./2
							³⁴ Ca	³⁵ Ca	³⁶ Ca	³⁷ Ca	³⁸ Ca	³⁹ Ca	⁴⁰ Ca	T _z =+1	
							³⁴ K	³⁴ K	³⁵ K	³⁶ K	³⁷ K	³⁸ K	³⁹ K	T _z =+3	/2
					³⁰ Ar	³¹ Ar	³² Ar	³³ Ar	³⁴ Ar	³⁵ Ar	³⁶ Ar	³⁷ Ar	³⁸ Ar	$T_{z} = +2$	
					²⁹ Cl	³⁰ Cl	³¹ Cl	³² Cl	³³ Cl	³⁴ Cl	³⁵ Cl	³⁶ Cl	³⁷ Cl		
			²⁶ S	²⁷ S	²⁸ S	²⁹ S	³⁰ S	³¹ S	³² S	³³ S	³⁴ S	³⁵ S	³⁶ S		
			²⁵ P	26p	²⁷ P	²⁸ P	²⁹ P	³⁰ P	³¹ P	³² P	³³ P	³⁴ P	³⁵ P		
	²² Si	²³ Si	²⁴ Si	²⁵ Si	²⁶ Si	²⁷ Si	²⁸ Si	²⁹ Si	³⁰ Si	³¹ Si	³² Si	³³ Si	³⁴ Si		
	²¹ AI	²² AI	²³ AI	²⁴ AI	²⁵ AI	²⁶ AI	²⁷ AI	²⁸ AI	²⁹ AI	³⁰ AI	³¹ Al	³² AI	³³ AI		
	²⁰ Mg	²¹ Mg	²² Mg	²³ Mg	²⁴ Mg	²⁵ Mg	²⁶ Mg	²⁷ Mg	²⁸ Mg	²⁹ Mg	³⁰ Mg	³¹ Mg	³² Mg		
Ζ	¹⁹ Na	²⁰ Na	²¹ Na	²² Na	²³ Na	²⁴ Na	²⁵ Na	²⁶ Na	²⁷ Na	²⁸ Na	²⁹ Na	³⁰ Na	³¹ Na		
↑	¹⁸ Ne	¹⁹ Ne	²⁰ Ne	²¹ Ne	²² Ne	²³ Ne	²⁴ Ne	²⁵ Ne	²⁶ Ne	²⁷ Ne	²⁸ Ne	²⁹ Ne	³⁰ Ne		
	¹⁷ F	¹⁸ F	¹⁹ F	²⁰ F	²¹ F	²² F	²³ F	²⁴ F	²⁵ F	²⁶ F	²⁷ F	²⁸ F	²⁹ F		
	¹⁶ 0	¹⁷ 0	¹⁸ 0	¹⁹ 0	²⁰ O	²¹ O	²² 0	²³ 0	²⁴ 0		²⁶ 0	²⁷ 0	²⁸ 0]	
L				▶ [N										

Isospin symmetry

effects of nucl. interaction

2+3 Mirror Energy Differences

M. A. Bentley et al., PRC 73, 024304 (2006)

Experimental data for sd shell nuclei

 \rightarrow

N

Excitation energies of $T_z = -1$ sd shell nuclei

		~1				³⁴ Ca	³⁵ Ca	³⁶ Ca	³⁷ Ca	³⁸ Ca	³⁹ Ca	⁴⁰ Ca			
- rati	JS 2	001				³³ K	³⁴ K	³⁵ K	³⁶ K	³⁷ K	³⁸ K	³⁹ K			
Sla				³⁰ Ar	³¹ Ar	³² Ar	³³ Ar	³⁴ Ar	³⁵ Ar	³⁶ Ar	³⁷ Ar	³⁸ Ar			
				²⁹ Cl	³⁰ Cl	³¹ Cl	³² CI	³³ Cl	³⁴ Cl	³⁵ Cl	³⁶ Cl	³⁷ Cl			
		²⁶ S	²⁷ S	²⁸ S	²⁹ S	³⁰ S	³¹ S	³² S	³³ S	³⁴ S	³⁵ S	³⁶ S			
		²⁵ P	²⁶ P	²⁷ P	²⁸ P	²⁹ P	³⁰ P	³¹ P	³² P	³³ P	³⁴ P	³⁵ P			
²² Si ²³	³ Si	²⁴ Si	²⁵ Si	²⁶ Si	²⁷ Si	²⁸ Si	²⁹ Si	³⁰ Si	³¹ Si	³² Si	³³ Si	³⁴ Si		_	
²¹ AI ²	²² AI	²³ AI	²⁴ AI	²⁵ AI	²⁶ AI	²⁷ AI	²⁸ AI	²⁹ AI	³⁰ AI	³¹ AI	³² AI	³³ AI			Energies / B(E2) kr
²⁰ Mg ²¹	¹ Mg	²² Mg	²³ Mg	²⁴ Mg	²⁵ Mg	²⁶ Mg	²⁷ Mg	²⁸ Mg	²⁹ Mg	³⁰ Mg	³¹ Mg	³² Mg	Г		Only energies know
¹⁹ Na ²⁰	⁰Na	²¹ Na	²² Na	²³ Na	²⁴ Na	²⁵ Na	²⁶ Na	²⁷ Na	²⁸ Na	²⁹ Na	³⁰ Na	³¹ Na			No excited states k
¹⁸ Ne ¹⁹	⁹ Ne	²⁰ Ne	²¹ Ne	²² Ne	²³ Ne	²⁴ Ne	²⁵ Ne	²⁶ Ne	²⁷ Ne	²⁸ Ne	²⁹ Ne	³⁰ Ne			No exerce states h
¹⁷ F ¹	¹⁸ F	¹⁹ F	²⁰ F	²¹ F	²² F	²³ F	²⁴ F	²⁵ F	²⁶ F	²⁷ F	²⁸ F	²⁹ F		٦	Known energies in
¹⁶ O ¹	¹⁷ O	¹⁸ O	¹⁹ O	²⁰ O	²¹ O	²² O	²³ O	²⁴ O		²⁶ O	²⁷ O	²⁸ O			$T_z = -1$ nuclei

IN

Excitation energies of $T_z = -2 \ sd$ shell nuclei

H. Schatz and K. Rehm Nucl. Phys. A 777, 601 (2006)

²⁴Si: H. Schatz et al., *PRL 79, 203845 (1997)*²⁸S, ³²Ar: K. Yoneda et al., *PRC 74, 021303 (2006)*³⁶Ca: P. Doornenbal et al., *PLB 647, 237 (2007)*

²⁰Mg: A. Gade et al., PRC 76, 024317 (2007)

MED for T=1,2 sd shell nuclei

Proton capture reaction rates in the rp-process', H. Herndl et al., PRC 52, 1078 (1995)

A=24: IA. Scade et al., IPRIV\$9,R\$84\$(7697)24317 (2007) A=28: K. Yoneda et al., PRC 74, 021303 (2006) A=32: P. D. Cottle et al., PRL 88, 172502 (2002) A=36: P. Doornenbal et al., PLB 647, 237 (2007)

Applicable for T=3/2 mirror pairs?

Excitation energies of $T_z = -3/2$ sd shell nuclei

Application on T=3/2 sd shell nuclei

 Next step: Measurement of ²⁹S excitation energies

 with two-step-fragmentation: ³⁶Ar-, ³⁰S-, ²⁹S+γ

 Next step: Investigation of transition strengths

 PreSpec proposal: Jan. 2009

B(E2) values for sd shell nuclei

SM calculations for B(E2) values of T=1,2 nuclei

Blue:	p-rich,	$T_z = -1, -2$
Red:	n-rich,	$T_z = +1, +2$

Good agreement of all interactions for n-rich nuclei p-rich nuclei: limited agreement, exp. very difficult

 \rightarrow Comparison with T=3/2 nuclei

SM calculations for B(E2) values of T=3/2 nuclei

S377 - Coulomb excitation of ³³Ar

FRS id

EUROBALL Cluster Array

LYCCA

Tracked ions by LYCCA

Target: Au

Detected γ-rays

Tracked ions from FRS

> HECTOR BaF₂ Array

PreSPEC

LYCCA – detection principle

Event-by-event identification by

- Position
- ΔE + TKE \rightarrow Charge Q=Z
- ToF + TKE
- \rightarrow Charge Q \rightarrow Mass A

 \rightarrow Tracking

Needed for

- Doppler correction
- Selection of reaction channel
- Determination of scattering angle

LYCCA – detectors

DSSD

Csl

LYCCA – detector module

- Highest solid angle coverage
- Modularity

Observables

 33,36 Ar (135-145 AMeV) on 386 mg/cm² Au \rightarrow γ -ray spectrum dominated by background radiation

Optimized γ**-spectra**

- Optimized particle gates
- Optimized Ge-time gates
- Multiplicity conditions
- Add back
- Background subtraktion

Reduction of relative error by approx. 50 %

Comparison with mirror nuclei

Calculation of B(E2) values

- Efficiency calibration of the PreSpec setup with known transition in ${}^{36}Ar: 2^+ \rightarrow 0^+$
- Correction for different γ-ray energies
- Correction for different ion velocity (Lorenz boost and scattering angle)
- Application of known ³³Ar branching ratio
- Considering of feeding into ³⁶Ar 2⁺ state

Nucleus	36	Ar	³³ Ar					
Transition	2+-	→0+	3/2	2+→1/2+	5/2+→1/2+			
	Lit.	Exp.	Lit.	Exp.	Lit.	Exp.		
Energy [keV]	1970.38(5)	1970(3)	1359(2)	1360(3)	1798(2)	1804(6)		
B(E2) [W.U.]	8.5(8)			6.39(1.49)		5.80(1.62)		

SM calculations for B(E2) values of T=3/2 nuclei

 T_z = - 3/2 nuclei with unpaired proton: only weakly bound

- First experimental value in sd shell
- Comparison with SM calculation
- Outlook:
 - Confirmation with further experiments (S377-II and ²¹Mg)
 - Extension to pf shell (no exp. values)

Outlook – further $T_z = -3/2$ investigations

Summary

- A final PreSpec result
- Transition strengths in ³³Ar measured
- Comparison with SM calculation
 - Further experiments recommended: ²¹Mg, ²⁵Si, ²⁹S

NUSTAR Annual Meeting Darmstadt, 28.02.2013 University of Cologne Andreas Wendt

LYCCA Taprogge, N. Braun, C. Goerge Wend scovici, P. Reiter, S. Thiel University of Cologne D. Rudolph Lund University /I. A. Bentley, N. S. Bondili Scruton **University of York** F.Schirru, A.Lohstroh University of Surrey

LUND		VALENCIA	
Joakim	Cederkall	Alejandro	Algora
Douglas	DiJulio		
Jnaneswari	Gellanki	KRAKAU	
Pavel	Golubev	Jerzy	Grebosz
Dirk	Rudolph		
MADRID		Padova	
Andrea	Jungclaus	Silvia	Lenzi
Jan	Taprogge	Francesco	Recchia

S377

GSI Fradaria

Frederic Ameil Gerl Jürgen Hubert Grawe Tobias Habermann Robert Hoischen Stephane Pietri Hans-Jürgen Wollersheim Kojouharov Ivan Niklas Kurz Schaffner Henning

TU Darmstadt

Plamen Boutachkov Giulia Guastalla Edana Merchan Norbert Pietralla Damian Ralet Michael Reese

YORK

Mike Bentley Dan Bloor Nara Singh Bondili Lianne Scruton

KÖLN	
Andrey	Blashev
Norbert	Braun
Kerstin	Geibel
Matthias	Hackstein
Kevin	Moschner
Peter	Reiter
Burkhard	Siebeck
Andreas	Wendt
Jan	Jolie

MILANO

Angela	Bracco
Franco	Camera
Fabio	Crespi
Bénédicte	Million
Anabel	Morales
Oliver	Wieland

RIKEN	
Pieter	Doornenbal
SURREY	
Michael	Bowry
Zsolt	Podolvak

PreSpec collaboration & NUSTAR simulation group

Bundesministerium für Bildung und Forschung

Supported by the German BMBF (06KY9136 TP7+TP1) and by the "Helmholtz Graduate School for Hadron and Ion Research.