Super-FRS EC In-cell MNT reactions at the FRS Ion Catcher Super-FRS EC

Paul Constantin (spokesperson), Timo Dickel (co-spokesperson) and the Super-FRS Experiment Collaboration

- Long-term goal: establish MNT reactions with slowed-down radioactive beams at the Super-FRS to produce
 - and measure heavy (A=190-260) neutron-rich isotopes.
- Exploratory program: in-cell MNT reactions with slowed-down ²³⁸U beam on targets inside CSC @ FRS-IC
 1) proof-of-principle measurements: 5 shifts
 - 2) n-rich actinides from ²³⁸U MNT: 8 shifts

• Expected challenges:

- 1) slow-down of relativistic beam to Coulomb barrier + fine focusing
- 2) space charge effects in the gas cell
- 3) high-density, high-purity gas cell

Super-FRS EC In-cell MNT reactions at the FRS Ion Catcher Super-FRS EC

Beam slow-down and focusing

Beam degrading from relativistic energies (500MeV/u at SEETRAM) to above Coulomb barrier (~8MeV/u) needs to be rather precise (±1-2MeV/u)

Paul Constantin | ELI-NP | IFIN-HH

Super-FRS EC In-cell MNT reactions at the FRS Ion Catcher Super-FRS EC

Beam slow-down and focusing

Distance from last FRS quadrupole to target: 530cm

Focus beam on 1 cm target, instead of 20 cm beam window

Dedicated ion optics and measurements to setup the beam on target:

Ionization current on beam dump

Beam range optimization with the MR-ToF

Super-FRS EC In-cell MNT reactions at the FRS Ion Catcher Super-FRS EC

Beam slow-down and focusing

Paul Constantin | ELI-NP | IFIN-HH

Super-FRS EC In-cell MNT reactions at the FRS Ion Catcher Super-FRS EC

Space charge effects

Extraction with electric fields: $\epsilon \ge 50\%$, $\tau \sim 10ms$, broadband

Drop in extraction efficiency of stopped fragments: - $E_{induced}/E_{applied} \approx 0.1$ -0.9: partial ion loss by field distortion

 $-E_{induced}/E_{applied} \ge 1$: complete ion loss (neutralization)

Paul Constantin | ELI-NP | IFIN-HH

Super-FRS EC In-cell MNT reactions at the FRS Ion Catcher Super-FRS EC

Space charge effects

Extraction with electric fields: $\epsilon \ge 50\%$, $\tau \sim 10$ ms, broadband

Drop in extraction efficiency of stopped fragments: $-E_{induced}/E_{applied} \approx 0.1-0.9$: partial ion loss by field distortion $-E_{induced}/E_{applied} \ge 1$: complete ion loss (neutralization)

A. Rotaru et al., Nucl. Instr. Meth. B 512 (2022)

MNT in INCREASE has two sources:

1) primary space charge

- by penetrating U beam: between target and beam dump

- 2) secondary space charge
- by MNT products: whole volume

Paul Constantin | ELI-NP | IFIN-HH

Super-FRS EC In-cell MNT reactions at the FRS Ion Catcher Super-FRS EC

Space charge effects

Extraction with electric fields: $\epsilon \ge 50\%$, $\tau \sim 10ms$, broadband

Drop in extraction efficiency of stopped fragments: $-E_{induced}/E_{applied} \approx 0.1$ -0.9: partial ion loss by field distortion $-E_{induced}/E_{applied} \ge 1$: complete ion loss (neutralization) J.W. Zhao et al., NIM B 547 (2024) lonization rate (He_3^+/s) 10¹⁰ 10¹¹ 10¹² 10¹³ Normalized extraction efficiency Experiment II, ²³⁵U: short DC-cage Experiment II, 238U: 94 V_{pp} RF carpet 40 V_{pp} RF carpet 28 V_{nn} RF carpet Previous investigations, ²¹³Fr and ²²¹Ac: Experiment D Simulations 0.1 10³ 10^{5} 10⁶ 10^{4} Rate of the incoming beam (ions/s) No impact in INCREASE at least up to $2 \cdot 10^{12}$ He₃^{+/s} \rightarrow Q \geq 7.4·10⁴ He₃⁺/mm³/s, I_{heam} \geq 2·10⁵ ions/s

Paul Constantin | ELI-NP | IFIN-HH

A. Rotaru et al., Nucl. Instr. Meth. B 512 (2022)

MNT in INCREASE has two sources:

1) primary space charge

- by penetrating U beam: between target and beam dump

2) secondary space charge

- by MNT products: whole volume

Super-FRS EC In-cell MNT reactions at the FRS Ion Catcher Super-FRS EC

Space charge effects

Paul Constantin | ELI-NP | IFIN-HH

Super-FRS EC In-cell MNT reactions at the FRS Ion Catcher Super-FRS EC

Space charge effects

SEC Meeting, Walldorf, 30 October - 1 November, 2024

Paul Constantin | ELI-NP | IFIN-HH

Super-FRS EC In-cell MNT reactions at the FRS Ion Catcher Super-FRS EC

Space charge effects

Does space charge containment (voltage beam dump + mini-cages) work? Up to what beam intensity?

Paul Constantin | ELI-NP | IFIN-HH

Super-FRS EC In-cell MNT reactions at the FRS Ion Catcher Super-FRS EC

High-purity He gas

- checked with sources: 228Th, 252Cf, etc.

- method developed for 252Cf independent fission fragment yields IFY(N,Z)

– for an experiment at non-optimal gas purity, the extracted the <u>chemical efficiency</u> C<10% Analysis by **Israel and his students**

Y. Waschitz et al., EPJ Web of Conferences 284 (2023)

Paul Constantin | ELI-NP | IFIN-HH

Super-FRS EC In-cell MNT reactions at the FRS Ion Catcher Super-FRS EC

G-22-00117 experiment

May 24-27 (followed by Ali's MNT experiment): 238 U beam at 500MeV/u, slowed down by FRS to ~13MeV/u, on 209 Bi target inside INCREASE

- MNT TLFs recorded by the MR-ToF: we have signal!
- intensity on target 10⁵-10⁶ ions/s without efficiency decrease: **space charge contained!**

Ali Mollaebrahimi et al., submitted to Nucl. Phys. A

Paul Constantin | ELI-NP | IFIN-HH

Super-FRS EC In-cell MNT reactions at the FRS Ion Catcher Super-FRS EC

G-22-00117 experiment

May 24-27 (followed by Ali's MNT experiment): 238 U beam at 500MeV/u, slowed down by FRS to ~13MeV/u, on 209 Bi target inside INCREASE

- MNT TLFs recorded by the MR-ToF: we have signal!
- intensity on target 10⁵-10⁶ ions/s without efficiency decrease: **space charge contained!**

Problems:

- 1. <u>Degrader drive broken</u>, need to use another degrader 4 m upstream: non-optimal degrading system
 - \rightarrow broader beam spread and spot on target
- 2. <u>Air leak in CSC</u>: molecular ions, esp. actinide oxide; also, large amount of Xe extracted
 - $(2^+ \text{ actinide oxides } A/q \sim 127-135; 1^+ \text{ Xe ions } A/q \sim 128-132)$
 - \rightarrow actinide region more difficult to analyze
- 3. <u>High radiation level</u> in S4: electronics failure + radiation alarms
 - \rightarrow access during beamtime, beam intensity limitation
- 4. Large background in extraction Si detector
- \rightarrow MNT study directly after CSC with high efficiency not possible

Paul Constantin | ELI-NP | IFIN-HH

Super-FRS EC In-cell MNT reactions at the FRS Ion Catcher Super-FRS EC

G-22-00117 experiment

- MNT products on A=211 isobaric chain: MNT proof-of-principle measurement!

– TLF signal is clearer than PLF (TLFs can be generated only in the target, while PLFs not)

- energy scan and angular selection (by INCREASE acceptance) characteristic to MNT reactions

normalized count rate with the MR-TOF mass spectrometer versus beam energy (FRS degrader thickness) for: primary beam (extracted as UO_2), target ions (elastic scattering), identified A=211 TLF isobars (Bi, At, Po, Rn)

Paul Constantin | ELI-NP | IFIN-HH

G-22-00117 Super-FRS EC In-cell MNT reactions at the FRS Ion Catcher Super-FRS EC

Data analysis ongoing...

Paul Constantin | ELI-NP | IFIN-HH

Super-FRS EC In-cell MNT reactions at the FRS Ion Catcher Super-FRS EC

Conclusions & Outlook

– experimental setup for in-cell MNT reaction working up to ~10⁶ U/s on target: primary beam of 0.2pA is sufficient to generate secondary RIBs!

– MNT TLFs measured: *proof-of-principle done*

- n-rich actinides: seen online in ²³⁸U+²⁰⁹Bi, analysis to follow (as for the TLFs)

– expected challenges:

1) beam slow-down and focusing: OK(ish), room for improvement...

2) space charge effects on extraction: no problem at 10^6 U/s on target!

3) gas purity: TLF masses ✔, PLF masses ?, cross sections ¥

- not expected problems:

1) high radiation from beam degrading

2) extraction Si det. not usable

LoI 12:

"Next stage of MNT driven neutron-rich isotope studies at the FRS Ion Catcher" Paul Constantin, Soumya Bagchi, Timo Dickel

 \rightarrow presentation tomorrow afternoon

Paul Constantin | ELI-NP | IFIN-HH

Paul Constantin | ELI-NP | IFIN-HH