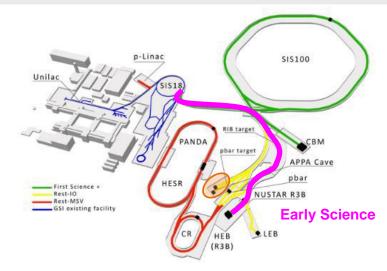


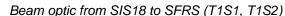
Outlook

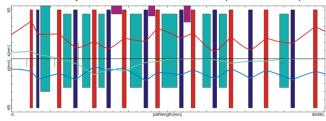
- Role of machine models
- Setting generation with LSA
- Project group "FAIR Data Supply"
- Status and tasks
- Developments for ES and FS
- Timeline
- Summary

Machine Models

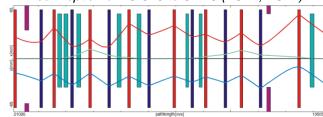
Early Science

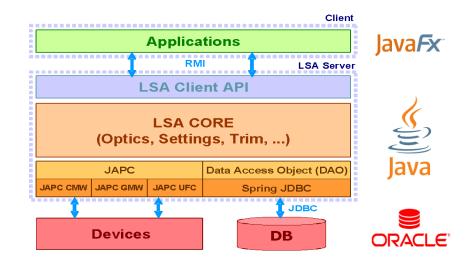

- Accelerator chain for creating primary beam
 - UNILAC → SIS18 → HEBT → SFRS target
- Components need to be orchestrated
 - Consistent set values (currents, voltages, ...)
 - Consistent timing (beam/RF pulses, ramps, ...)
- Must bring accelerator physics into control system


Physics-driven machine model

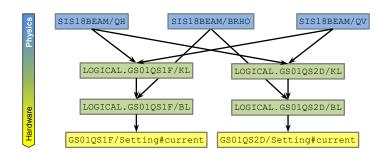

- Physics parameters for tuning accelerators
 - Beam parameters: ion type, energy, ...
 - Machine parameters: beam optic, tunes, ...
- Translation into consistent set values and timing
- Applications for managing settings

Relevance for commissioning


- Assumption: ES model required from phase 3.2
- Communicate earlier intended use!


Beam optic from SIS18 to SFRS (TSX1, TSF1)

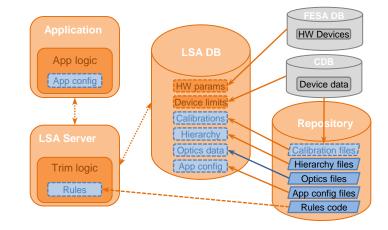
LSA Framework


- LSA: Framework for accelerator modeling
 - Invented by CERN, co-developed by CERN/GSI
 - Data-driven system with 3-tier architecture
 - Integral part of FAIR control system
- Separation of expertise
 - Framework maintained by IT experts
 - Convenient hooks for data and physics
 - Responsibility lies with owner of expertise
 - Framework: controls group
 - Model (physics): machine groups
 - Device data: technical groups

Machine modeling with LSA in a nutshell

- Machine represented by parameters
 - Linked to logical or physical devices
 - Hierarchy from physics to hardware
- Cycles organized in contexts
 - Basic unit: beam process
 - Grouping into chains and sub-chains
- Values represented as settings
 - Value of parameter in beam process
 - Stored in LSA-DB including history
 - HW settings get sent to devices
- Calculations implemented as rules
 - Translate from parent to child settings
 - Called by LSA when values change (trim)
 - Java code mostly written by physics experts
 - Accelerator-specific data read from LSA-DB

Setting of tune parameter		
Parameter	SIS18BEAM/QH	
Beam process	P.SIS18.RING_INJECTION	
Value	Constant function = 4.28	


$$KL_n = KL_n^{(0)} + \frac{\partial KL_n}{\partial Q_h} \cdot (Q_h - Q_h^{(0)})$$

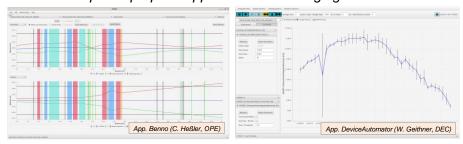
$$Q_h \qquad \qquad Q_h \qquad Q_h$$

Organization

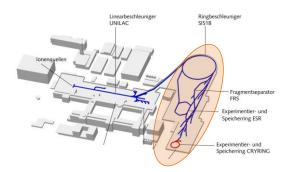
- Project group "FAIR Data Supply"
 - Mission: setting generation for FAIR (since 2009)
 - Cross-department organization
 - Maintenance of LSA framework: 1 FTE (ACO)
 - Physics model
 - Core team: 2 FTE model (SYS)
 - Additional contributors from machines, e.g. SFRS
- Modelers' job: physics
 - Collection of requirements on models
 - Parameter hierarchy and algorithms (rules)
 - Provision of optics data and theory values
 - Configuration of settings applications
- Models needs device data
 - Used to calculate and check set values
 - Calibration curves for all magnets
 - Device limits (min/max values) for power converters
 - Must be provided by technical groups via CDB

Applications

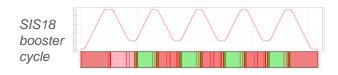
- Operators need interface to models
 - Applications serve as user interface
- Generic applications
 - Creation of patterns with initial values
 - Manipulation and visualization of set values
 - Import and export of top-level parameters
 - Provided by ACO
- Special purpose applications
 - Provide higher-level functionality
 - Manipulate parameters of the model
 - Can be contributed by ACO or others


SchedulingApp: Creation of patterns

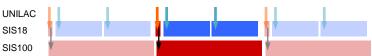
ParamModi: Manipulation and visualization of set values


Special purpose applications for changing set values

Present status and tasks

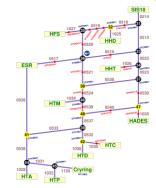


- Status of machine models
 - Production use
 - SIS18, ESR, CRYRING
 - GSI-HEBT, FRS operational
 - Prototype implementations
 - SIS100 (in use for string test)
 - UNILAC (work in progress)

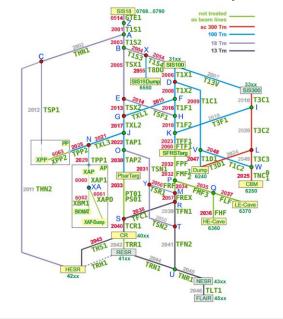


Production use of models		
CRYRING (injector)	2016	
CRYRING	2017	
SIS18	2018	
FRS	2019	
ESR	2020	
HITRAP	2022	
SIS100 (string test)	2023	

- Present main tasks
 - Developments for ES
 - Machine model for ES beamline
 - Machine model for SFRS
 - Developments for FS
 - Completion of SIS100 model
 - Booster mode for SIS18
 - Conceptual work for FAIR operation
 - Completion of UNILAC model (mainly ICU team)

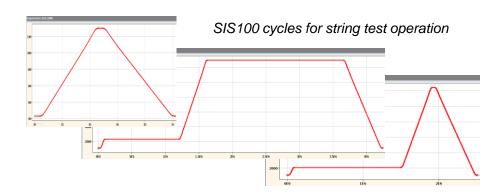


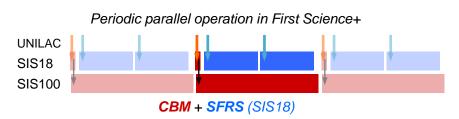
Developments for Early Science

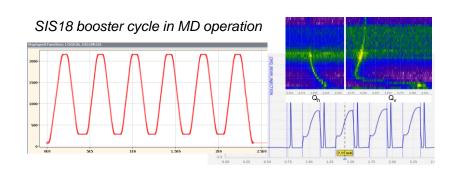


- Machine model for FAIR-HEBT
 - Responsibility SYS (I. Kraus)
 - Includes magnets of SFRS
 - Model identical to GSI-HEBT
 - Data sources partially different
 - Unified approach for GSI and FAIR in progress
 - ES beamline with mock-data ready spring 2025
- Machine model for SFRS
 - Magnets modeled as part of FAIR-HEBT by SYS
 - Matter part responsibility of SFR/SFS
 - Model very similar to FRS at GSI
 - Planned and executed by SFR/SFS personnel
 - Support by data supply group
- Production use requires real device data
 - Models initially tested with mock-data
 - Real data must be in CDB in time for dry runs

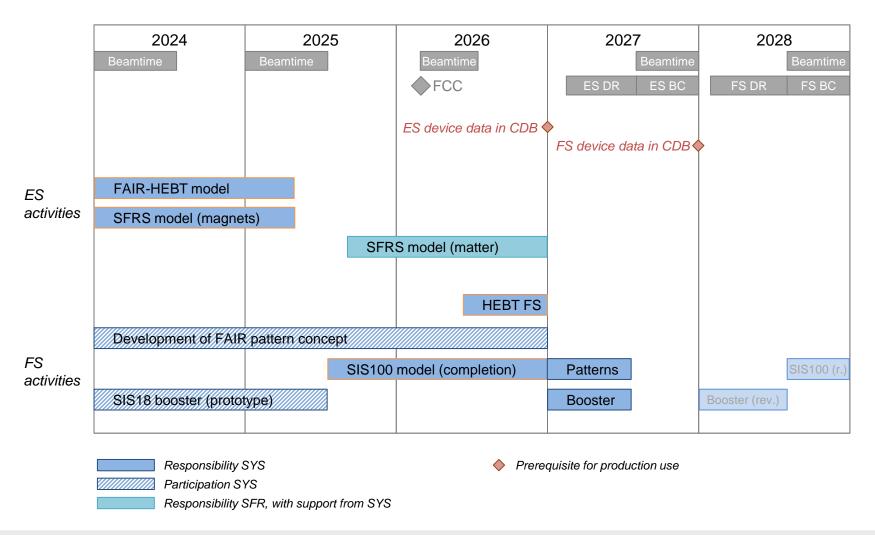
Beamlines of the GSI facility


Beamlines of the full FAIR facility

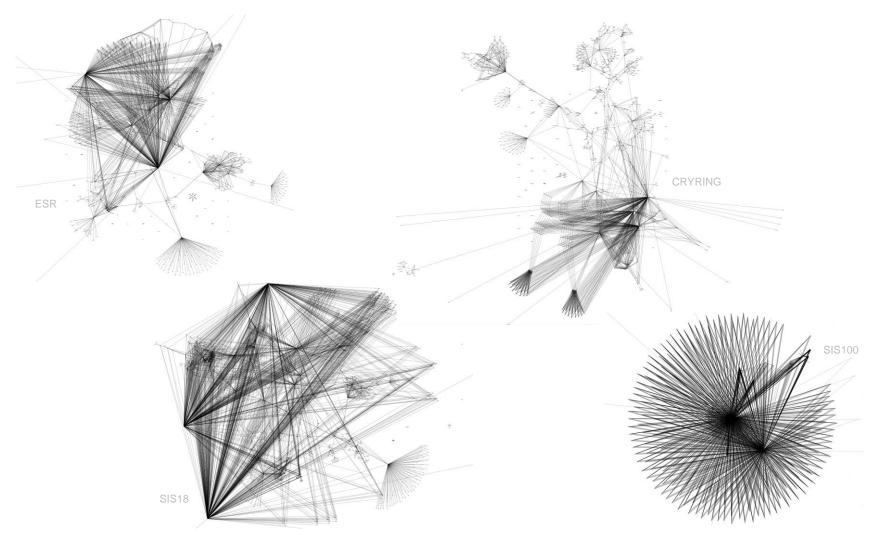



Developments for First Science

- Machine model for SIS100
 - Prototype exists, used at SIS100 string test
 - Completion planned until end 2026
- Modeling of parallel operation
 - Requires concept of periodic patterns
 - Extension of LSA/BSS under responsibility ACO
 - Modelers support development of concept
 - Expected to be available by end of 2026
 - Adaptation of all models planned until end 2027
- Implementation of SIS18 booster mode
 - Prototype for machine development exists (wip)
 - Model completion planned until end 2027
 - Integration with new UNILAC timing system
 - Adaptations to FAIR patterns



Timeline


Summary

- Machine models translate accelerator physics to set values for devices
 - Implementation based on LSA framework
 - Project group "FAIR Data Supply"
- Machine models in production use for GSI facility (except UNILAC)
- Model for ES will be ready early
- Production use of ES model requires device data in CDB
 - Responsibility of technical groups
 - Deadline: last control system release before dry-runs (phase 3.2)
- Present assumption: production use of ES model from phase 3.2
 - If set values from model are required earlier, let us know!

Thank you for your attention!

LSA can do dandelions, too, and more...