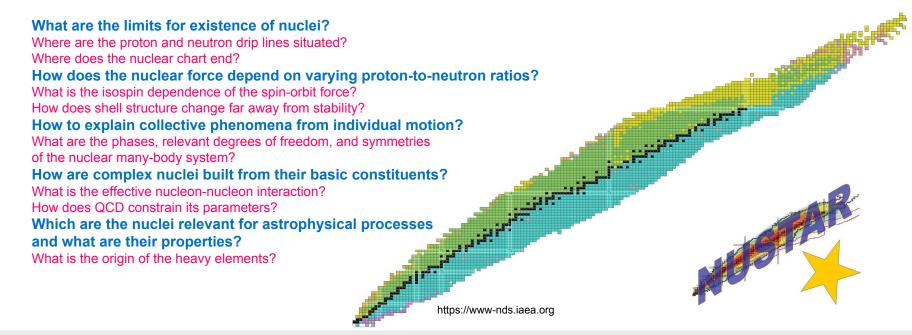
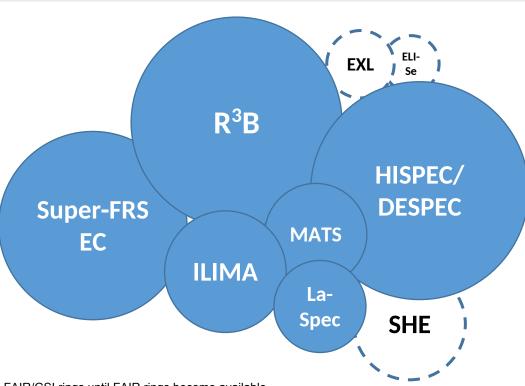


Glueballs:
What are protons and neutrons made of?
What is the structure of hadrons?

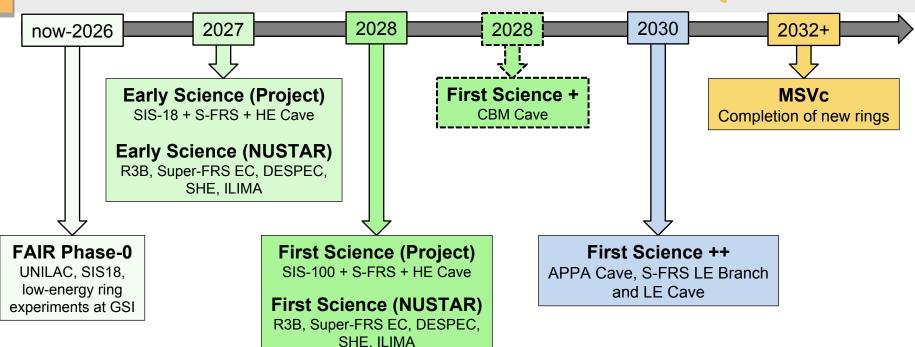


CBM

NUSTAR Collaboration


- NUSTAR NUclear STructure, Astrophysics and Reactions
- NUSTAR physics covers the entire nuclear chart!
- Complementary approaches to answer fundamental physics questions:

NUSTAR Collaboration

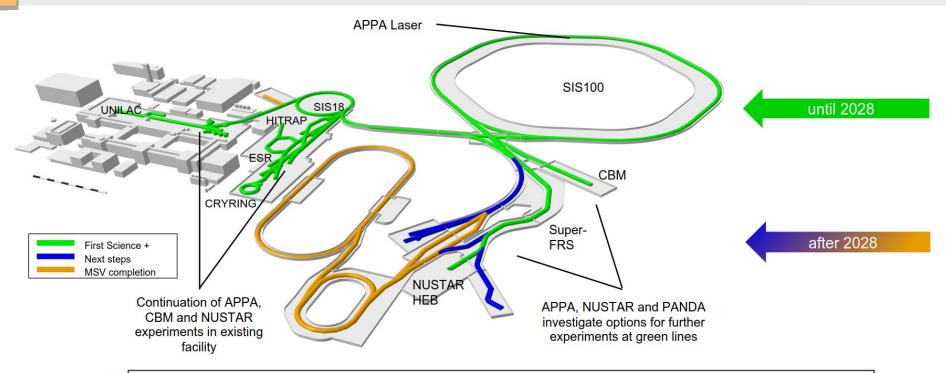

HISPEC/ DESPEC	In-beam γ -ray spectroscopy at low and intermediate energy, n-decay, high-resolution γ , α , β , p , spectroscopy				
MATS	In-trap mass measurements and decay studies				
LaSpec	Laser spectroscopy				
R ³ B	Kinematically-complete reactions with relativistic radioactive beams				
ILIMA(*)	Large-scale scans of mass and lifetimes of nuclei in ground and isomeric states				
Super-FRS EC	High-resolution spectrometer experiments				
SHE(**)	Synthesis and study of super-heavy elements				
ELISe(#)	Elastic, inelastic, and quasi-free e-A scattering				
EXL(#)	Light-ion scattering reactions in inverse				

- (*) NUSTAR experiment using existing FAIR/GSI rings until FAIR rings become available
- (**) NUSTAR experiments using FAIR/GSI linear accelerators
- (#) Experiments requiring NESR alternative solutions within FAIR MSV under consideration

NUSTAR timeline

- Timeline dependent on Council decisions and timely delivery of SIS100 quadrupoles
- Additional funding needed in 2026 for continuation of skilled workforce

Green: Budget available

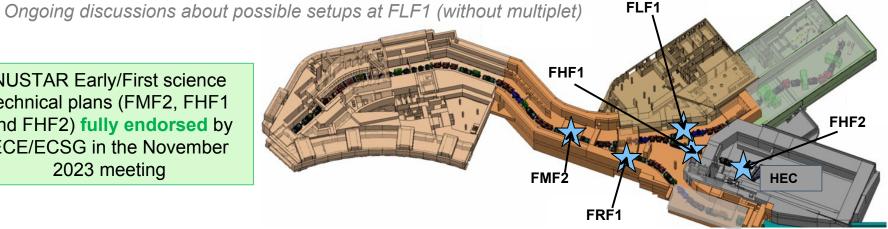

Green: Budget decision expected soon

Blue: Civil construction complete

Orange: Significant additional investment required

FAIR in 2028

NUSTAR at the Super-FRS (R³B, Super-FRS EC and DESPEC) with SIS100 beams, plus SHE experiments at UNILAC and ILIMA at the low-energy rings


Early Science Locations

Key focal planes of the S-FRS:

- FMF2 mid-point of main separator
- FHF1 (tunnel)
- and FHF2 (HEC) along high-energy branch
- Some basic infrastructure planned for LEC to supply HEC, but no full TBI/beamline
- No ring branch; possible BIOMAT setup at the beginning of the ring branch (NUSTAR-BIOMAT MoU ready to sign)
- EXPERT neutron detectors NEURAD possible at FRF1

NUSTAR Early/First science technical plans (FMF2, FHF1 and FHF2) fully endorsed by ECE/ECSG in the November

2023 meeting

Early Science Setups: R³B in the HEC

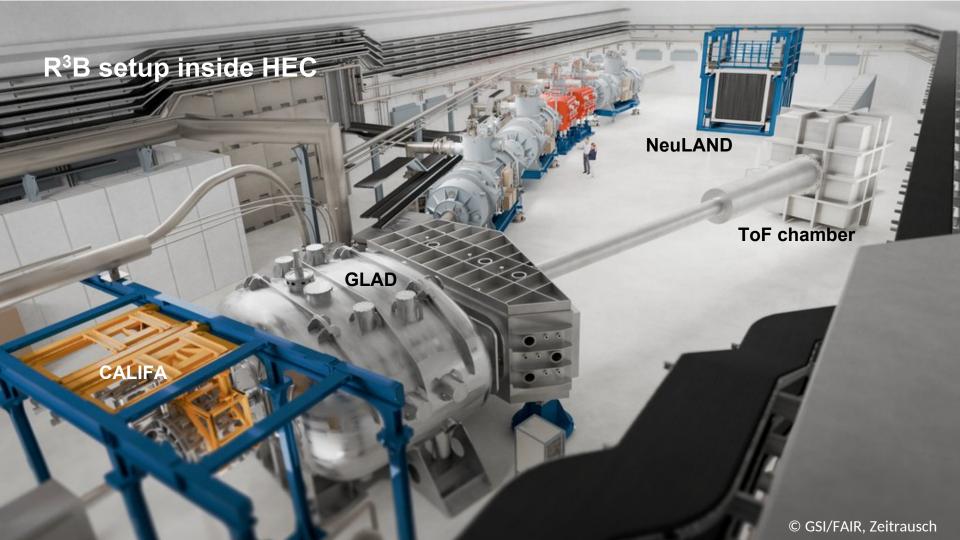
CALIFA with 832 new crystals in the Backward Barrel

New beam diagnostic

LH₂-target with different piping and safety system

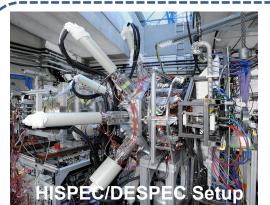
TRT with new barrel geometry and 4 x more acceptance

FOOT in-beam tracker with new electronics


GLAD with new control system

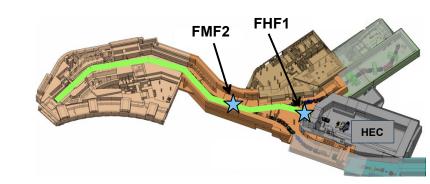
PAS with full angular coverage and operation in vacuum

NeuLAND significantly more double-planes


New HI Fiber tracker

TOF-D with a new in vacuum operation

Early Science Setups: Compact setups FHF1/FMF2 FAIR == 1

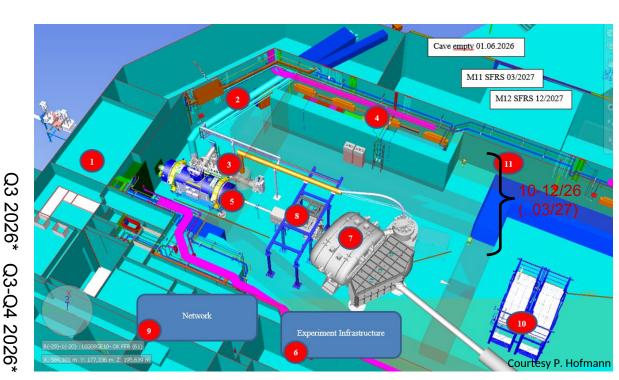


Handover "cave ready for installation"

As soon as building is ready for installation, some infrastructure items can be installed (limited due to work on Super-FRS)

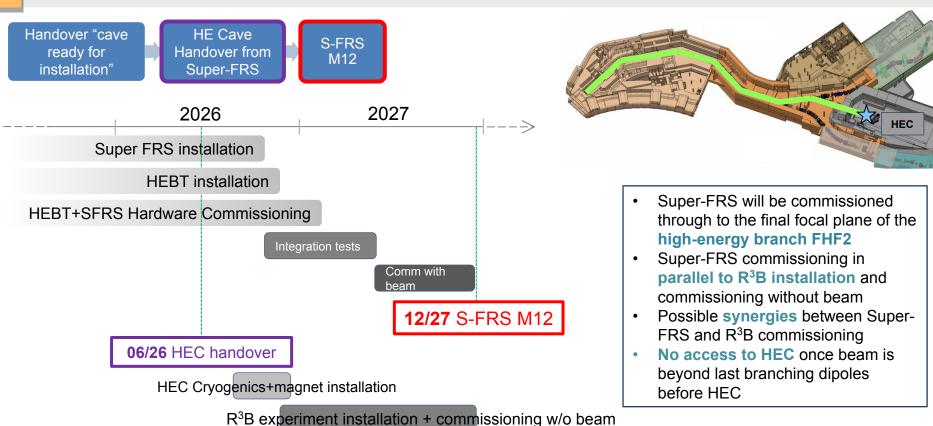
Handover "cave ready for installation"

06/26


HE Cave

Handover from

Super-FRS


As soon as HEB cave is "empty", handover MS from Super-FRS, installation of R3B can start

- Mobile wall
- 2) Cryo Distribution Line
- 3) Local Cryo
- 4) Racks and cables (machine)
- 5) Multiplet (inc. connections to media)
- Experiment Infrastructure
- 7) GLAD
- 8) CALIFA
- 9) Network
- 10) NEULAND
- 11) Closing of outside wall 03/27

*Estimated dates - details being worked out in LCM Workshops

Handover "cave ready for installation"

HE Cave Handover from Super-FRS

S-FRS M12 NUSTAR Commissioning

Separate commissioning phases:

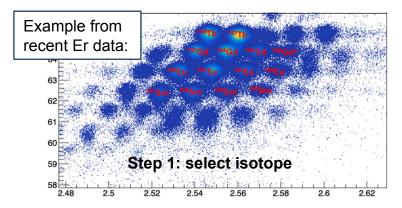
- 1. End of the Super-FRS commissioning verification of particle identification (PID) with simple (compact) setup at FHF2
- 2. Physics run at FHF2, expansion of existing setup at FHF2
- 3. Full in-beam commissioning of R³B for 'First' experiment

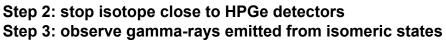
Problem - no interface between ACC (magnets, drives) and NUSTAR (Super-FRS detector + NUSTAR detector readout) planned

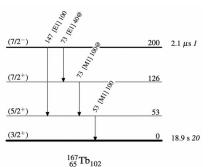
- Lead by Super-FRS
 - NUSTAR support (e.g. detector setup, maintenance, operation,...)
- Commission Super-FRS/NUSTAR DAQ coupling
- Lead by NUSTAR

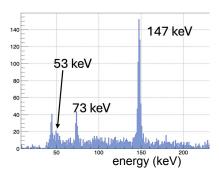
Super-FRS support (machine settings, implantation profile, ...)

- Production of more exotic nuclei
- Provide physics results for fast publication
- Lead by NUSTAR

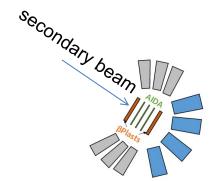

Super-FRS support (machine settings, implantation profile, ...)

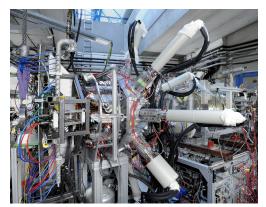

- Removal of compact setup
- In-beam commissioning of full R³B instrumentation inside HEC

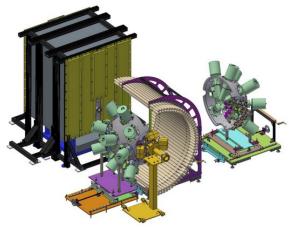

HPGe detectors for fast PID verification

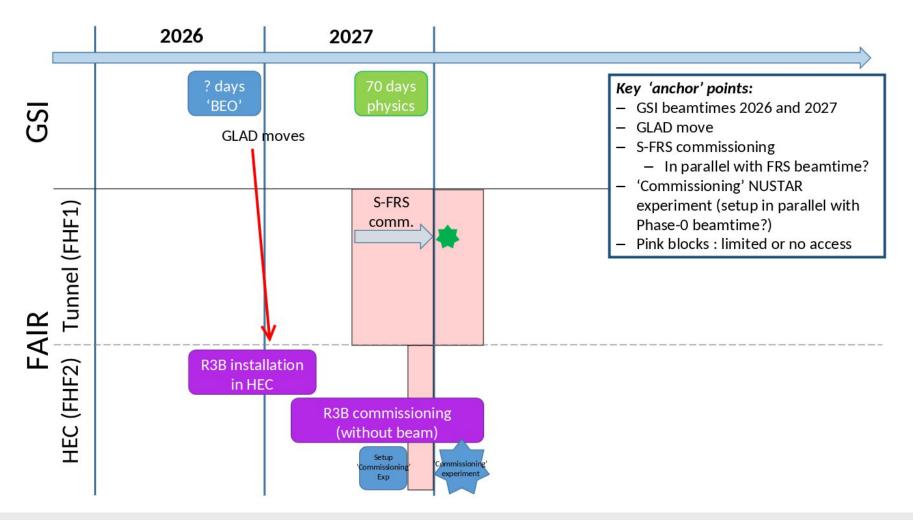


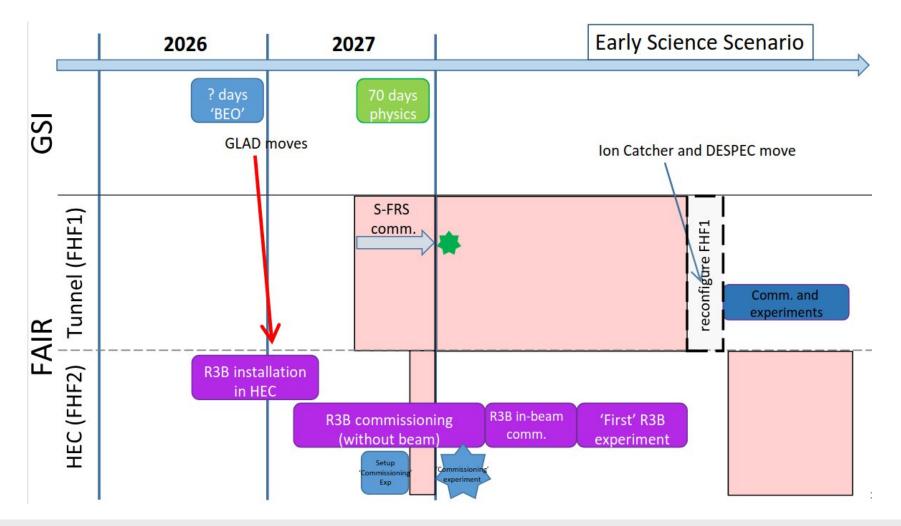
- Gamma decay is a (simple!) electromagnetic process wherein a nucleus decays from an excited state to a state with lower
 energy via the emission of a photon, i.e the number of protons and neutrons remains the same
 - √ (quite) easily observed
 - √ difficult to block
 - ✓ EM interaction well-understood
- HPGe detectors have excellent energy resolution and allow fast observation of peaks
- Typical nuclear states only live for a very short time (~femtoseconds)
- **Isomeric states** are those states where the decay is hindered for some reason
- Isotopes can stay in those states until the end of the Super-FRS where they can be stopped
- There is a wealth of data on known isomeric states spanning the nuclear chart






Example implantation-decay setups


DESPEC setup at the FRS



FRIB Decay Station Initiator (FDSi, https://fds.ornl.gov/initiator/)

Timeline from FRIB:

- May 2022 first experiment
- PRL on new lifetimes N>28 (published Nov. 2022)
- PRL on unexpected isomer ³²Na (June 2023)
- PRL on new isotopes ¹⁹⁸Pt beam (Feb. 2024; exp Feb. 2023)

'First' experiment

- Question asked by Joint Scientific Council what will be the 'First' experiment to yield extremely high-impact scientific results?
- Full R³B setup inside HEC focussing on **neutron skin measurements or fission**

Why?

- Improved transmission with Super-FRS
- Maximum gain for medium-heavy (Ca-Sn) nuclei
- Cleaner beams
- Longer Time-Of-Flight within HEC compared to Cave C at GSI (i.e. improved identification and angular resolution of R3B setup
- Successful preparatory experiments already carried in Phase-0

Unique → no other place with high-energy fragmentation beam

Beam requirements for both choices are in line with expected parameters:

73+U via process chain

Source - UNILAC - TK - SIS18 - S-FRS - Exp

NUSTAR Early Science Beams

- NUSTAR requirements are outlined in the FAIR Operating Modes document
- Detailed input also given to the Performance Committee

Top priority for NUSTAR Early Science: high-intensity U beams

Requirements for the 'First' experiment are in line with projected availability Scientific potential of 'decay station' experiments scale with intensity

BUT the NUSTAR science program needs a variety of beams (and even sometimes new ones!)

- Any stable (including enriched) isotope from H to U might be required
- Preference for heavy ions, Z>50
- Others: U, Bi, Pb, Au, Er, Xe, Kr, Ar, protons

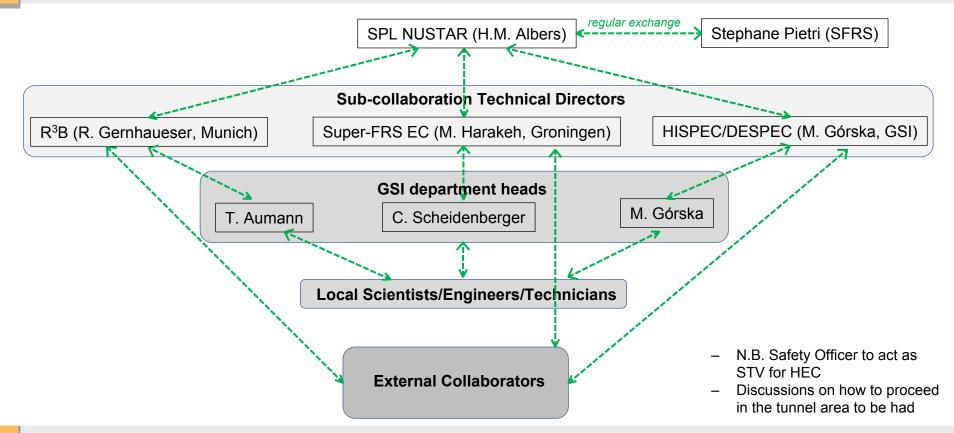
R³B Commissioning Plans

Detector	Version	Cave-C 2026	Cave-C 2027	HEC-offline	HEC -beam
CALIFA	forward		¹ H(p,p)		
	Full		¹ H(p,p)	2028	2028, ¹ H(p,p), ¹² C(p,2p)
TRT	Stage1	²³⁸ U	¹ H(p,p)		
	Stage2			2028	2028, ¹ H(p,p), ⁵⁰ X(p,2p)
GLAD	full			2027	2028, ¹ H(p,p), ⁵⁰ X(p,2p)
TOF-D	Full/50%	Frag	¹ H(p,p)	2027	2028, ⁵⁰ X(p,2p)
PAS	prototype		¹ H(p,p)	2028	2028, ¹ H(p,p)
	full			2028	2028, ¹ H(p,p)
DAQ	full	¹⁹⁷ Au	¹ H(p,p)	2027	2028, ¹ H(p,p), ⁵⁰ X(p2p)
NeuLAND	14 – 20 DP			2027	2028, ² H(p,2p)
ACTAF1	new		¹ H(p,p)		2029, ¹ H(p,p), ⁵⁰ X(p,2p)
LH ₂ Target	10 cm		¹ H(p,p)	2028	2028, ¹ H(p,p)
HI Fibers	0.5/0.2 mm			2027	2028, ¹ H(p,p), ⁵⁰ X(p,2p)
Sofia				2027	2028, ²³⁸ U

Partly commissioned, requires modification or extension

New devices that need full commissioning

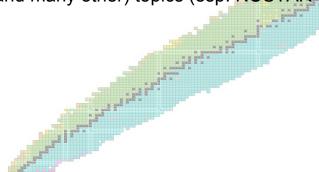
Commissioning resource planning



	DESCRIPTION			
ROLE	DESCRIPTION	2025	2026	Туре
NUSTAR Safety Officer	 Verification of procedures related to safety in NUSTAR areas (e.g. GBUs) Ensure that NUSTAR components are compliant to proper safety standards, and that appropriate safety documentation is available Ensure safety protocols are in place for in-beam commissioning of NUSTAR components Take the role of STVp (eventually STV) for the High-Energy Cave 			NEW, permanent
NUSTAR DAQ Specialist/ Coordinator	 Ensure that all NUSTAR DAQ infrastructure is properly installed ready for in-beam commissioning Conduct final tests to ensure proper integration of NUSTAR DAQ with other FAIR DAQ systems Coordination between NUSTAR sub-collaborations and S-FRS DAQ team Maintenance and development (if required) of NUSTAR DAQ systems during all commissioning phases 			NEW, permanent
Detector Specialist (1)	 System integration, verification and commissioning of NUSTAR ES detectors (HISPEC/DESPEC DEGAS) 			NEW, temp (tbc)
Detector Specialist (2)	 System integration, verification and commissioning of NUSTAR ES detectors (Super-FRS Experiment Collaboration) 			NEW, permanent
Engineer (1)	- Integration, verification and commissioning of R3B setups in the Hgh-Energy Cave			NEW, permanent
Detector Specialist (3)	- System integration, verification and commissioning of NUSTAR ES detectors (R3B)			NEW, permanent
Engineer (2)	- Support with NUSTAR integration/commissioning			EXISTING, permanent
Engineer (3)	- Support with NUSTAR integration/commissioning			EXISTING, permanent

- First plan for manpower
 2025 developed
- Top priorities covered (Safety Office, DAQ specialist, R³B engineer,...)

Comissioning roles and responsibilities (draft)



Summary

- The NUSTAR sub-collaborations have a large variety of experimental setups (and therefore commissioning requirements
- Is it important to distinguish between the 'First' experiment (full R³B) and experiments that will be carried out earlier in time (e.g. simple implantation setup)
- Part of the R³B setup has been/will be commissioned in Cave C, but many devices will need extended or even new commissioning in the High-Energy Cave
- Further details of the 'First' and earliest experiments are being currently developed
- Regular exchange on all commissioning (and many other) topics (esp. NUSTAR S-FRS) will continue

NUSTAR Requirements I

- Intense primary beam
 - Already needed now for Phase-0. The first experiments at FAIR (Early Science) will need large gains in intensities for new physics!
- Beam spot size matching the emittance requirements of the separators (FRS and Super-FRS) (especially for high-intensity beams where emittance may grow)
- Any stable (including enriched) isotope from H to U might be required
 - preference for heavy ions, Z>50
 - often-used projectiles U, Bi, Pb, Au, Xe, Kr, Ar and protons
- Uniform spill structure: non-stochastic beam intensity spikes overload the experiments leading to severe data losses
- Fast and reliable switching from high intensity to a few kHz and vice versa

NUSTAR Requirements II

- Parallel operation, fast switching between experiments: parasitic startup commissioning, typical running times in order of ~1wk, optimised scientific output
- Shorter off-spill periods for slow extraction: increased integrated number of ions on target allows for more exotic nuclei or shorter experiments
- Very short spills: 5-15 ms spill lengths important for Cryogenic Stopping Cell experiments (achieved in 2014 and 2016)
- Optimised transmission between FRS and ESR

