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* ALICE is dedicated to the study of
nuclear matter under extreme
energy densities — Quark-Gluon
Plasma (QGP)

» Pb ions collided at sy = 5.36 TeV
at ~50kHz — typically O(103) tracks
per central (head-on) collision

* Reconstruction of rare decays from
product tracks using precise
tracking capabilities (ITS, TPC)
complemented by particle
identification (PID) from
TPC+TOF
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=== I Introduction to TPC PID

* ALICE Time Projection chamber: Main detector
system for tracking + identification (PID) of
charged particles at midrapidity

* Working principle for PID:
- Charged particles lose energy as they
traverse detector gas
- Energy loss measured as specific energy
deposit per unit length, dE/dx
- ldeal case: Bethe-Bloch energy loss curve as
function of By characteristic for all particle
species, defined by properties of detector
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=S II Introduction to TPC PID
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* In reality, Bethe-Bloch
description alone is not
enough to fully describe PID
response

* Measured signal and precision
can depend strongly on:
- Environmental conditions
(gas temp/pressure)
- Fluctuations in gain
calibration
- Number of clusters
associated to a track
- Detector occupancy /
interaction rate
- Region of detector / dead
channels
- and more!
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Introduction to TPC PID

0.10

0.09

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01

)]
n

TRC Mean MIP Q 4, vs tan(lambda)

N
B

[$))

&)

(SIS RS |
=y

o

S
o

Gaus Fit Mean d E/dx;; (arb. unit)

s
@

B
]

T T

MIP Q.,, TPC
5"J e e

dE/dx, (arb. unit)

J. Wilkinson

Gaus Fit Mean d E/d X, (arb. unit)




800

E=II Goal of TPC PID in analysis software ol
e T LICE

ALICE Performance
Run 3 pp, /s = 13.6 TeV
524.3 x 10° events
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ALEPH Bethe-Bloch fit

* Main goal: Post-calibration of dE/dx response

at analysis time 600

dE/dx (arb. units

- . 500
— Provide expected mean + sigma for each

track, based on knowledge of detector
response

400
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— Input signal + track/event parameters from
standard data file, output n, for each
species in PID table

— Analyser calls “track->tpcNSigmaSpecies”
for simple use in their own task - does not
have to use raw dE/dx information in
analysis

— Perform a multidimensional fit of relevant
parameters rather than a simple product of
independent 1D corrections
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Determination of BB function parameters: Lightweight ROOT
fit for dE/dx parameters for all species simultaneously.

The BB parameters are obtained from fitting(dE/dx)vs By
with a parametrized (ALEPH) function.
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Basic dE/dx parameterisation
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E=II Neural network corrections for TPC PID in Run 3

LHC22f

* Main procedure for Run 3: 6D correction of
expected mean + width of PID distribution for
each species

fatvo

* Inputs: Bethe-Bloch parametrisation,
momentum, incident angle, charge/transverse
momentum, species mass, TPC occupancy,
number of clusters

* Output: Correction factor for expected BB
curve

Hidden Layer 3

* Training performed on clean samples of input
tracks from so-called “V°” decays

Hidden Layer 2

* Performed per “chunk” of reconstructed data
(~week of data taking) with similar data-taking o
conditions PR
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Implementation in O? analysis software

1. Skimming of processed data performed on LHC Grid using customised V° selection tasks

2. Train neural networks = PyTorch: Flexibility and easy GPU support, using GPU resources on GSI computing farm

3. Interface between Python and C++ for Neural Network training/inference: ONNXRuntime - Open Neural Network

Exchange. Allows portability of trained networks between different codebases + simple loading at runtime

4. ONNX models uploaded to ALICE Calibration & Conditions Database (CCDB); Automatic file-fetching from CCDB

and application at runtime

ALICE

5. Corrections applied to <dE/dx> and resolution before saving no information to TPC tables; application is transparent

to analyser

6. Dedicated QA tasks can be attached to check performance for all species

GSI Al workshop, 29/10/2024
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- Production of pp collisions from 2023 data-taking
- Pure BB function captures distributions reasonably well, but with deviations at high momenta for pions and protons
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Performance in pp collisions
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== I Performance in pp collisions with neural network

After applying NN corrections:
- Significant improvement over full kinematic range, particularly in low-momentum region
- Reliable mean correction and sigma estimation in all regions of clear separation in the TPC

ndTFC
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=1 Performance in Pb-Pb collisions ;
ALICE

Pb-Pb collisions: High detector occupancy, much more challenging environment to produce clean signals for training
* Most recent reconstruction pass for 2023 Pb-Pb data shows strong improvement in low-momentum tails + resolution

estimation when NN corrections are applied
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== I Summary

* Neural network provides a robust 6-
dimensional correction to PID response in
ALICE TPC - key input for many physics
analyses

* Use of ONNXRuntime allows simple interface
+ portability between Python-based neural
network training and C++-based O? analysis
framework

 Availability of GPU resources at GSI allows
faster training; inference still possible +
performant on CPUs on LHC Grid

v0-pid-ga (w/ NN)

* Corrections with this method released for | TP v | —ci
trigger skimming on most recent datasets, - M
with refinements added for each new
reconstruction pass of data
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== I Method in LHC Runs 1+2 (2009-2018)

* dE/dx splines of mean detector response were fit
from clean samples of “V°” decays (A, K% , v )

— Clean samples of electrons, pions, protons using

cuts on decay kinematics + topology

— Other species (K, d) are included using TOF
response cuts where available

— Series of separate correction factors layered on
top of each other based on momentum region,
incident angle, multiplicity, ...

— Result is spline of expected dE/dx as function of
By, stored in analysis software and used at
analysis time
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=S Basic dE/dx parameterisation in O?

10°

* VO/TPC only / TPC+TOF used for initial selection
(“basic skimming”) for first pass of BB fit

ALICE Run3 data
pp, Vs = 13.6 TeV
LHC22f, Nov 2022

102

* Custom tree skimmer on Hyperloop:

rec [arb. units]

- V% decays of A and K, deliver pions and protons;
y-conversion produces electron sample

- TPC / TPC+TOF cuts to enrich samples in regions of
clear separation between species

dE/dx
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* Requirements: Representative input sample, “basic”

initial BB parameters (sampled from LHC22m) o o LHC228 Lo mpne]
5 | . : Rl ey 10
* Sampling full period due to varying conditions between omE LK Sdbevy 00ras
individual runs (interaction rate, MIP point, ...) ool : '

* Mean estimation + hyperparameter optimization orsf - :'3'
framework for the calibration of the initial parameters 3
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Mean correction with neural networks

I=5= 1L
* Input: Track parameters
(p, tan(A), sign(q)/p;, mass hypothesis, normalized multiplicity, normalized number of clusters)
* Output: dE/dx of identified particles as a ratio to the Bethe-Bloch parametrisation as correction factor
to expected curve
Bethe-Bloch + NN
N (n)

Bethe-Bloch parametrisation

(m)

TPC

N

a

[ ad ™

N, (m)

,,,,,,

uuuuuuuuuuu

uuuuuuuuuu

plZ] (GeVic)

1077
plZ] (GeVic)
J. Wilkinson

GSI Al workshop, 29/10/2024

17




* Monte Carlo: Required for correction of
efficiencies in analysis selections

* However, anchoring does not reflect real
distribution of signals — data calibrations

* Solution: “Tuning” of MC signal based on
expectations from data:
- MC truth used to define particle species
- MC signal sampled randomly by a Gaussian

with expected signal + width defined by BB+NN

from data
- Sampled signal used for all n, calculations

instead of stored value
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MC: TuneOnData implementation
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