

GSI/FAIR AI Workshop

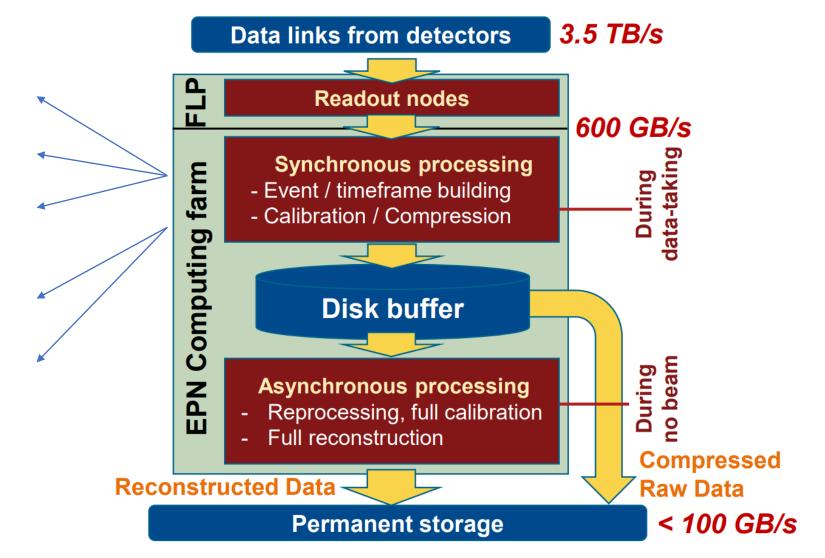
	I

6-

FAIR

Real-time reconstruction and calibration

- Tracking
- Identification
- Triggering
- Calibrations
- Slow control



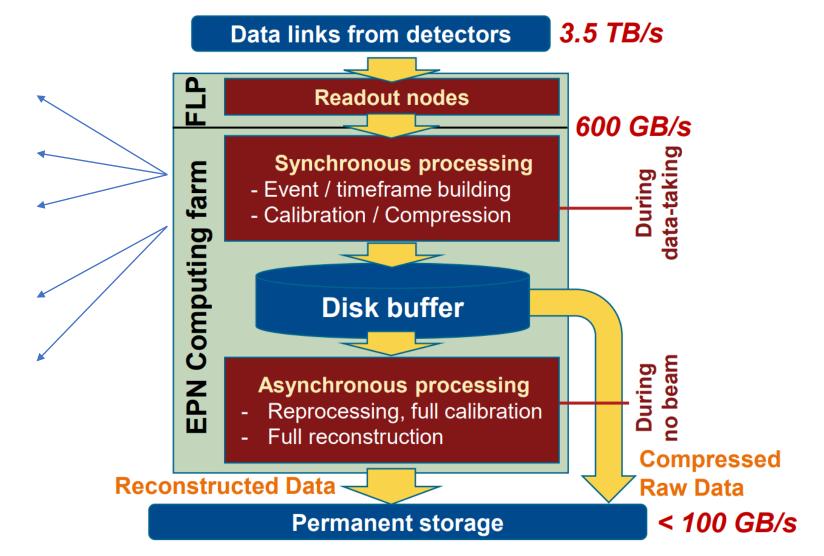
Synchronous reconstruction for high level online triggering

consuming

Online calibrations

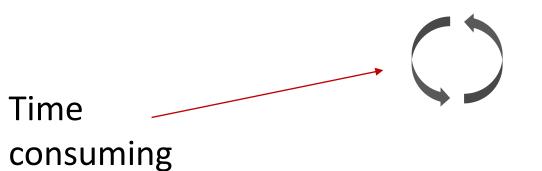
Real-time reconstruction and calibration

- Tracking
- Identification
- Triggering
- Calibrations
- Slow control



GSI/FAIR AI Workshop

Synchronous reconstruction for high level online triggering



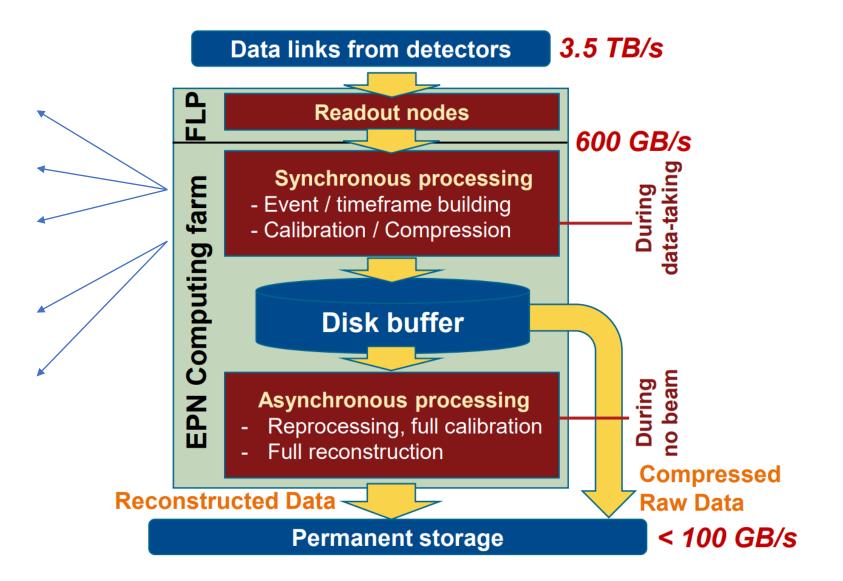
Online calibrations

Can we avoid the loop?

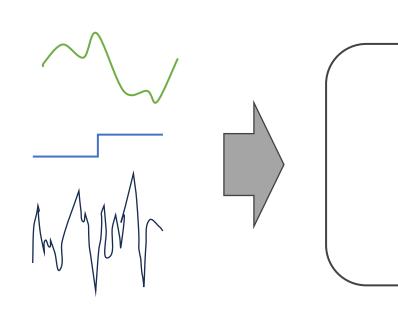
29.10.2024

Real-time reconstruction and calibration

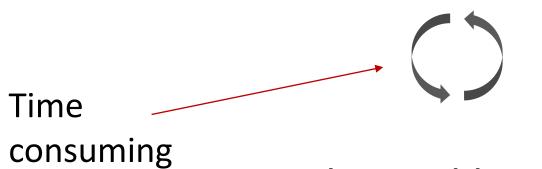
- Tracking
- Identification
- Triggering
- Calibrations
- Slow control



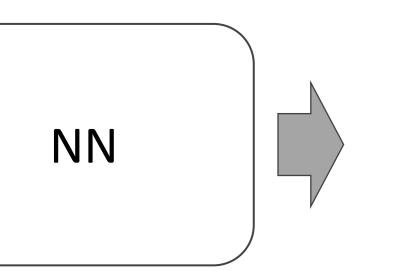
- Environment (P, T)
- Settings (V, beam)
- Trigger rates



Synchronous reconstruction for high level online triggering



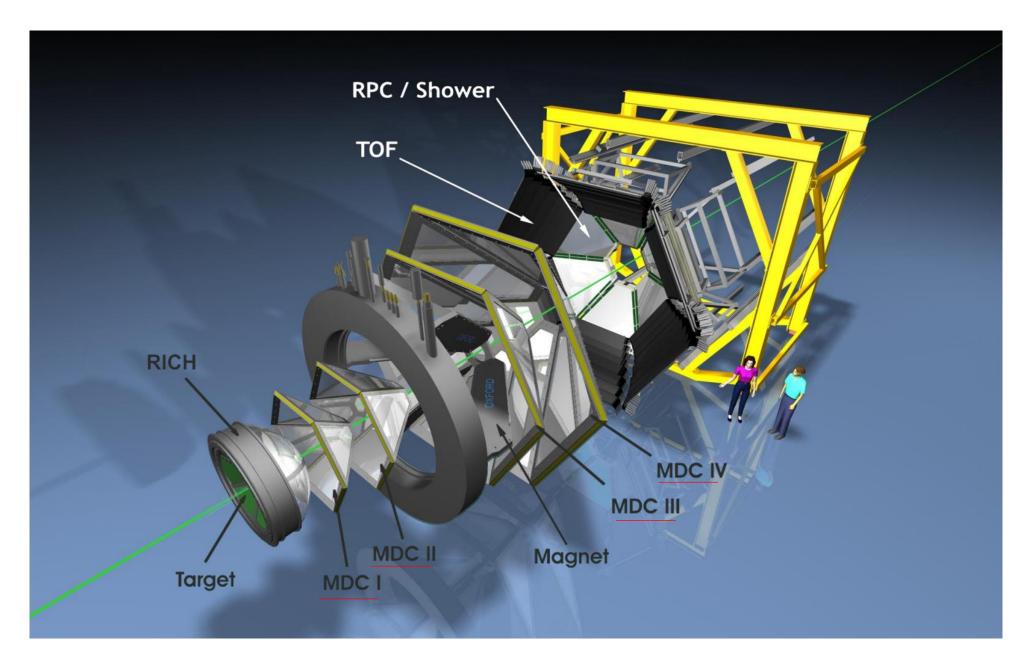
Online calibrations



- Calibration factors
- Recommended settings (HV)
- Anomaly detection

HADES experiment

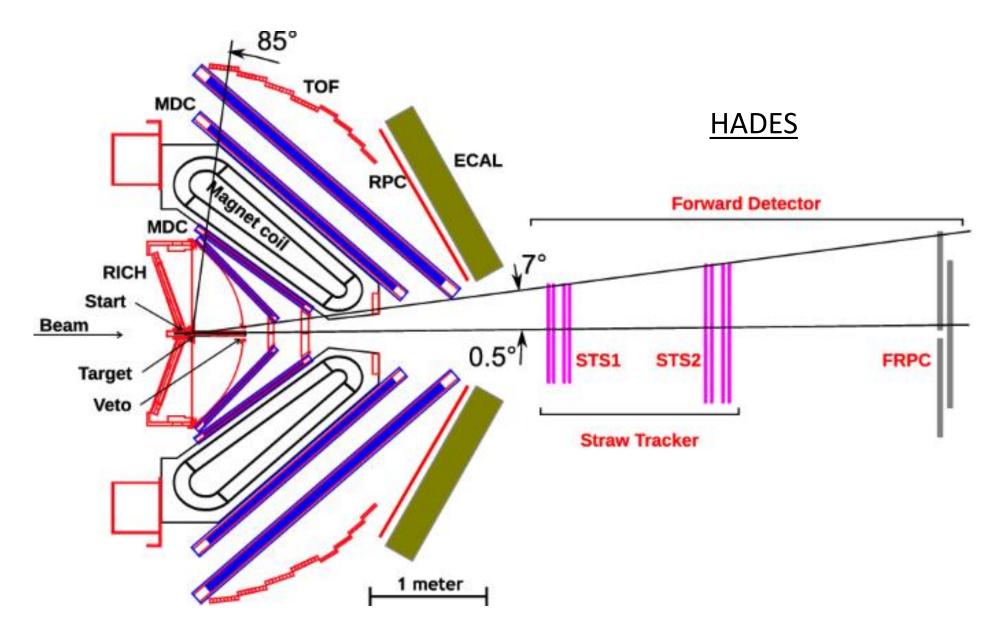
- FAIR Phase Zero experiment;
- Currently running with regular data taking (every 1-2 years);
- Developed infrastructure;



4 planes x 6 sectors of MDC = <u>24 chambers</u>

Valentin Kladov

GSI/FAIR AI Workshop



MDC – mini drift chambers

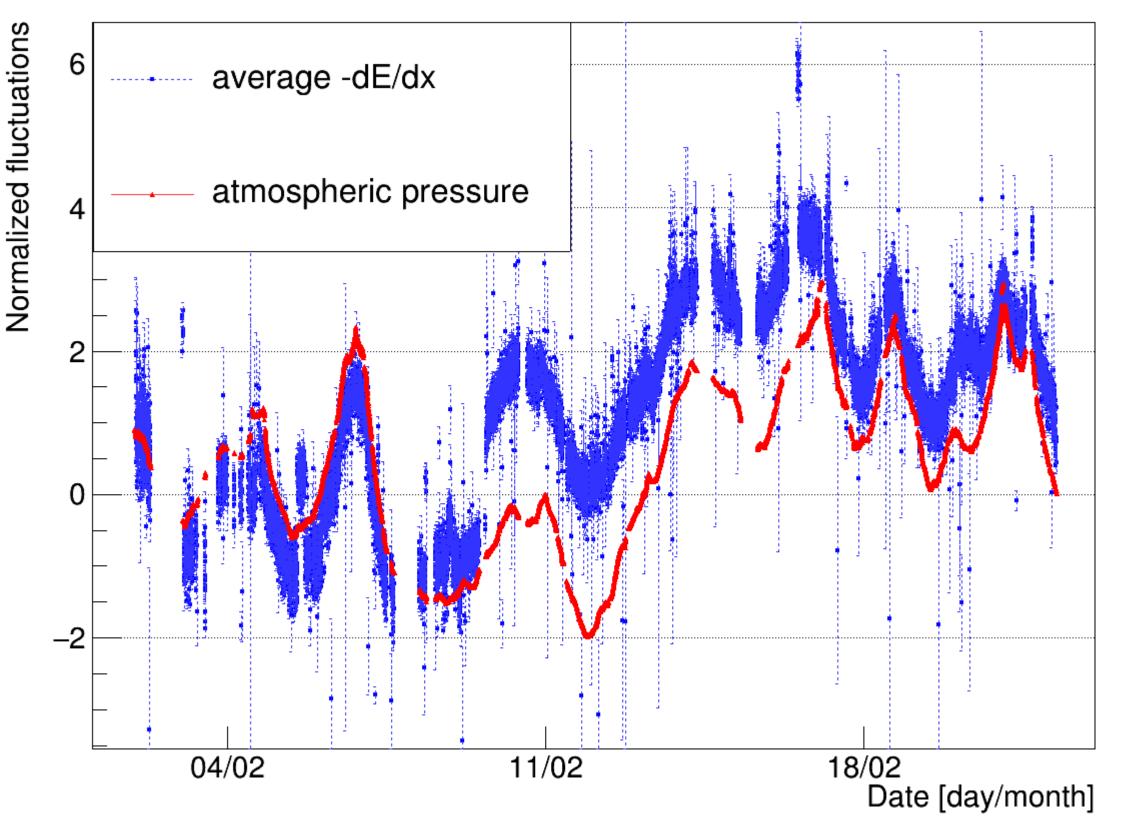
Possible values to predict:

- Drift time (~"measured" distance) used for track reconstruction.
- <u>Chamber gain (</u>~"measured" dE/dx). used for PID

Ionization losses in drift chambers

Reasons to test on MDC:

- Significant fluctuations (5-10%);
- Clear dependence on environmental parameters;
- Environmental parameters are measured and stored.



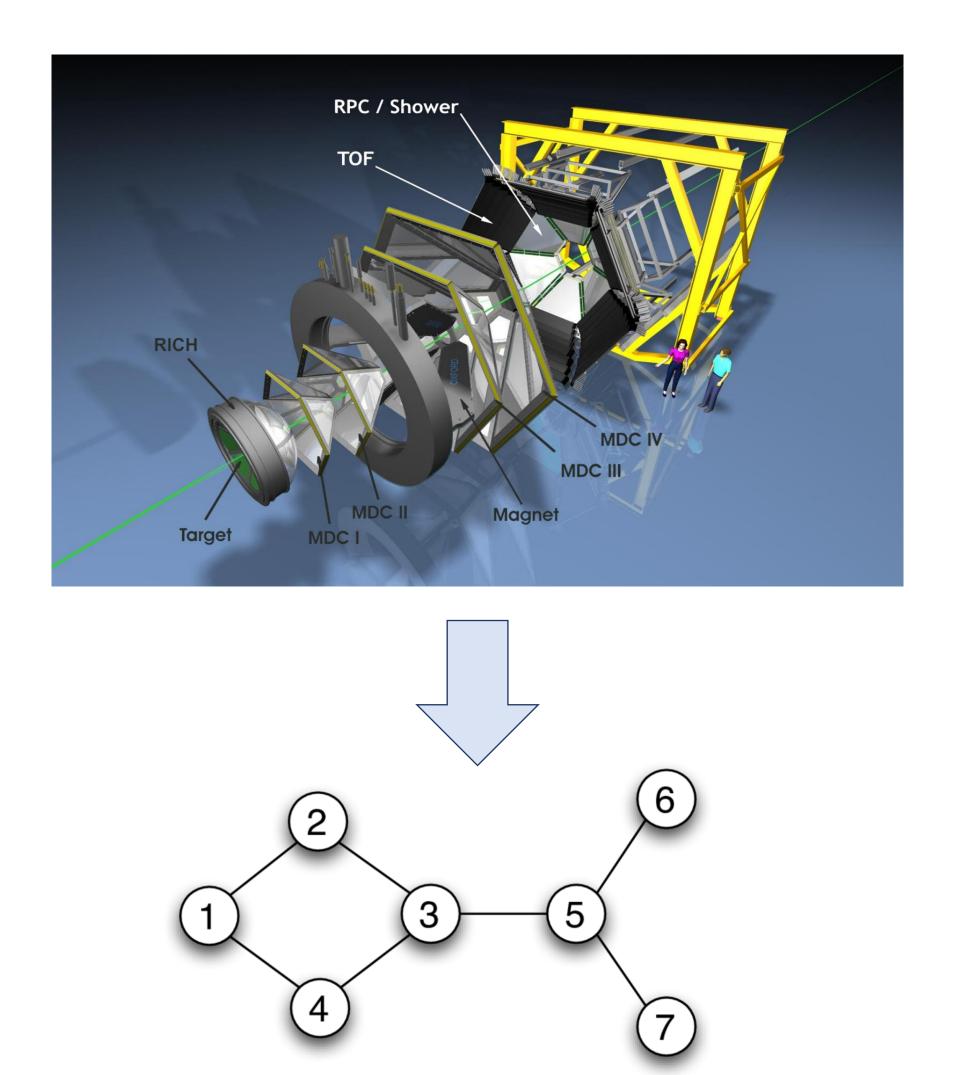
Correlations between atmospheric pressure (red) and averaged ionization losses (blue). Feb22.

Input parameters:

- Atmospheric pressure;
- High voltage;
- CO₂ concentration;
- Overpressure;
- H₂O concentration;
- Dew Point;
- Electronics temperature;

- Each dot is a single run, ~100k/24 events, 1-2 min
 - Smooth change with time (~15 min).

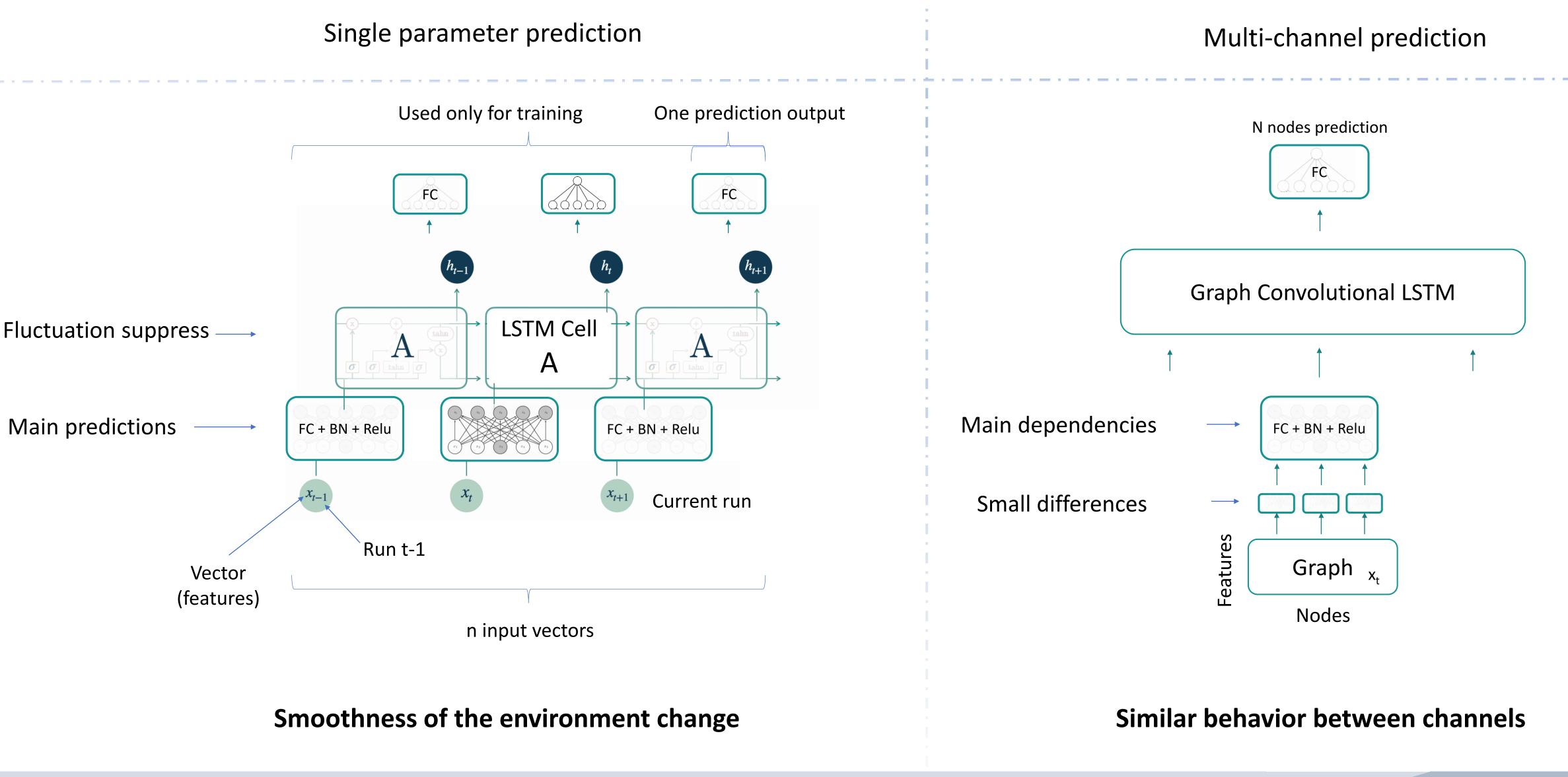
Multi-channel prediction



→ Represent detector as a graph (4 planes X 6 sectors)

 \rightarrow Utilize similarities by convolutions.

Neural network architecture



Valentin Kladov

GSI/FAIR AI Workshop

Prediction time consumption

Source	
NN Computation speed	NN
Database readout from GSI network	
Standard run duration (1 data point)	
Environmental parameter stability interval	
NN initial training	$O(N_{ep}$
NN retraining	$O(N_{ep}$

Depends on	Time
N propagation $O(N_{nodes})$	$50 \pm 10 \ ms$ (24 nodes)
$\sim (N_{nodes})$	$1\pm0.1s$ (24 nodes)
_	1 – 2 <i>min</i>
_	~15 min
_{pochs} * N _{nodes} * N _{runs}) + Init	~30 min (150 epochs, 24 nodes, 10 ³ runs)
_{pochs} * N _{nodes} * N _{runs}) + Init	$\sim 1 min$ (50 epochs, 24 nodes, 10 ² runs)

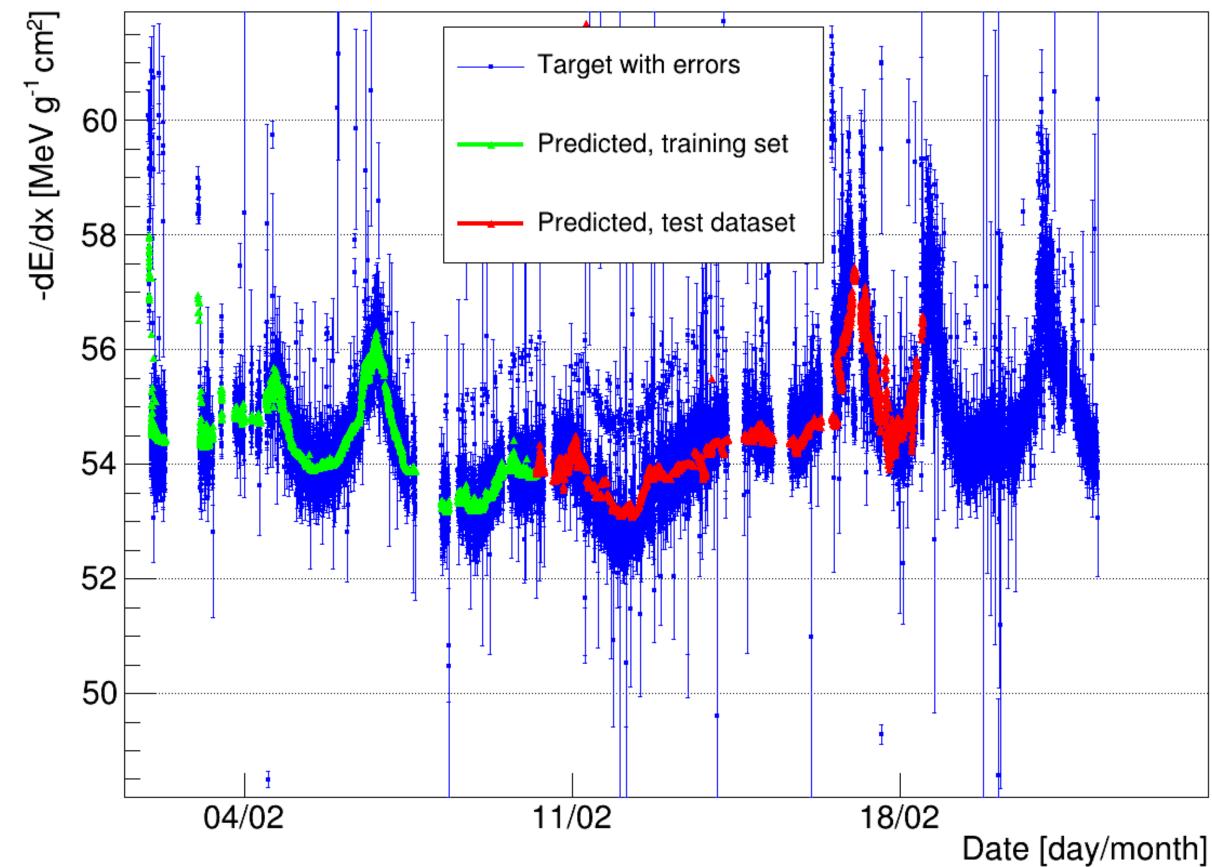
Prediction quality

Simulating new beamtime:

- **1.** Get average dE/dx from offline calibration in feb22 data;
- 2. Train on the part of data, fix most of the parameters after;
- **3.** Predict with added regularization and a regular retraining.

Significant room for improvements:

- 1. No temperature information stored;
- 2. Target offline calibration is unstable.

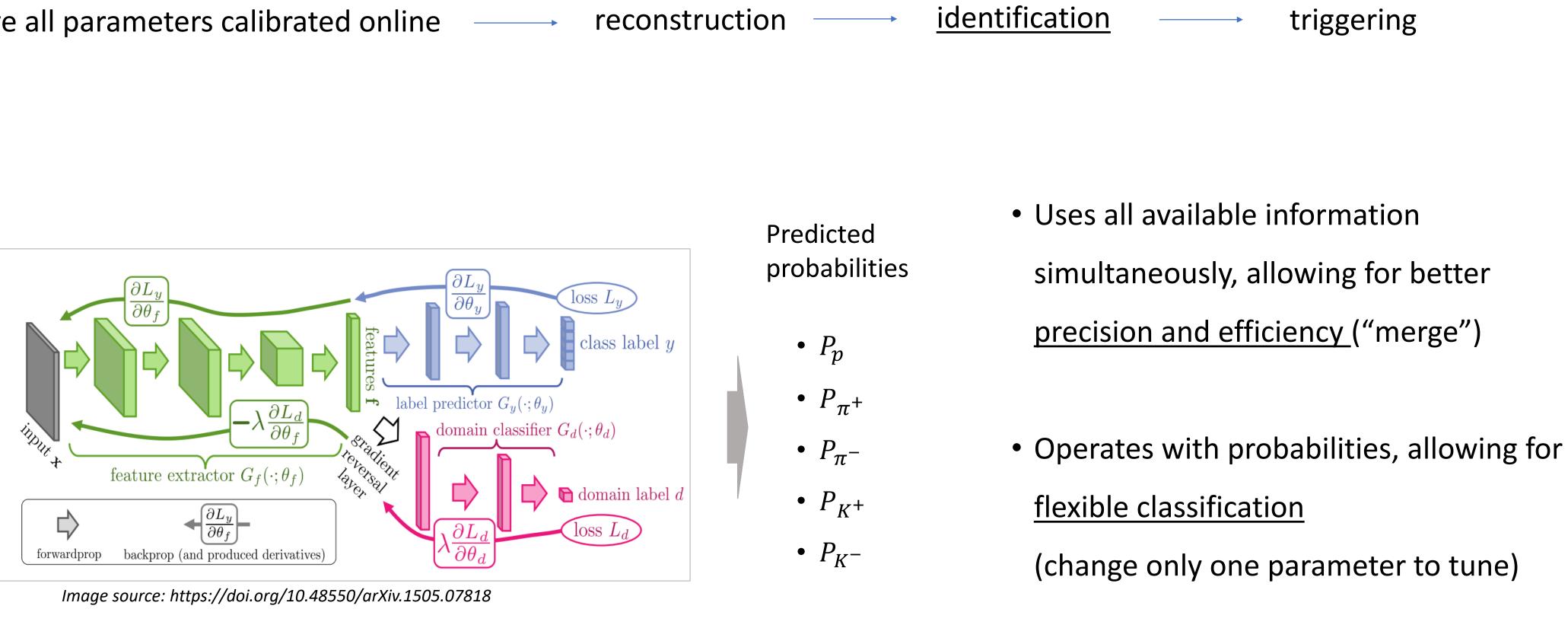


Particle identification for HADES

We have all parameters calibrated online

Input parameters

- Momentum
- Charge
- Theta
- dE/dx_{MDC}
- dE/dx_{TOF}
- *ToF*
- Distmeta
- Beta
- Metamatch
- Mass²



Summary & Outlook

- 1. NNs can provide fast (<1s) calibrations with accuracy, compatible with usual methods.
- 2. Synchronous processing can benefit from ML techniques at

almost all stages, giving faster and/or better results.

 \succ Improvements in the offline dE/dx calibration.

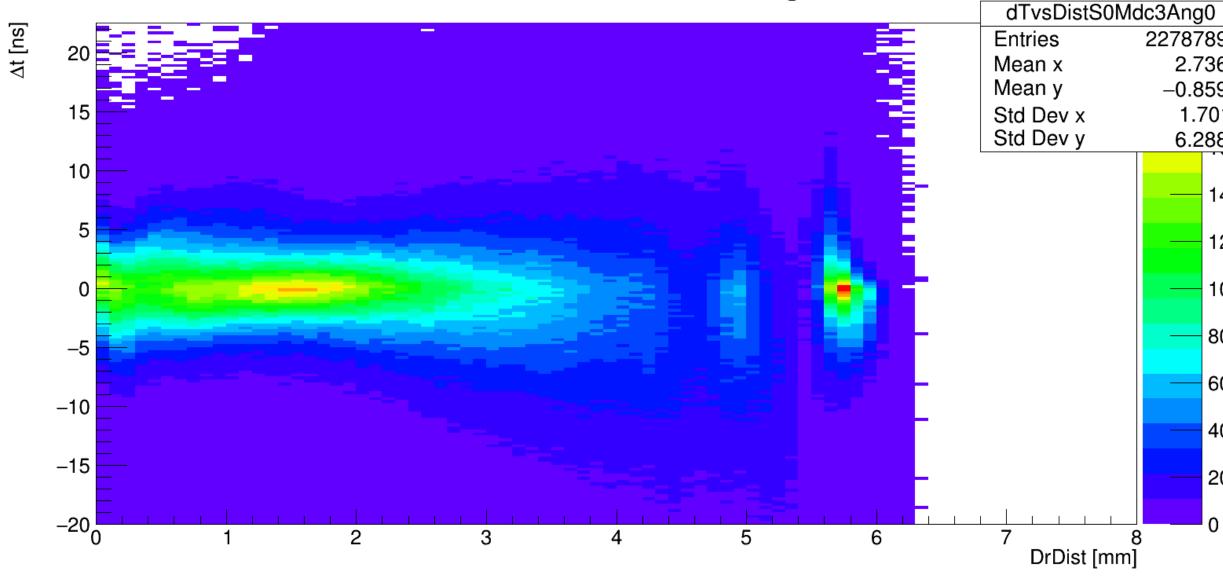
 \succ Test on the MDC time-distance calibration.

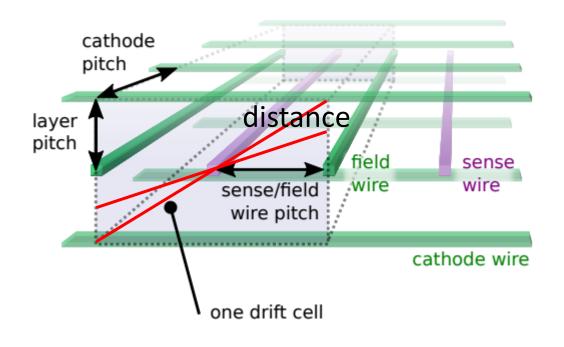
Fine-tuning for real applications.

Test of HV predictions (slow control).

Backup

Overview of different calibrations

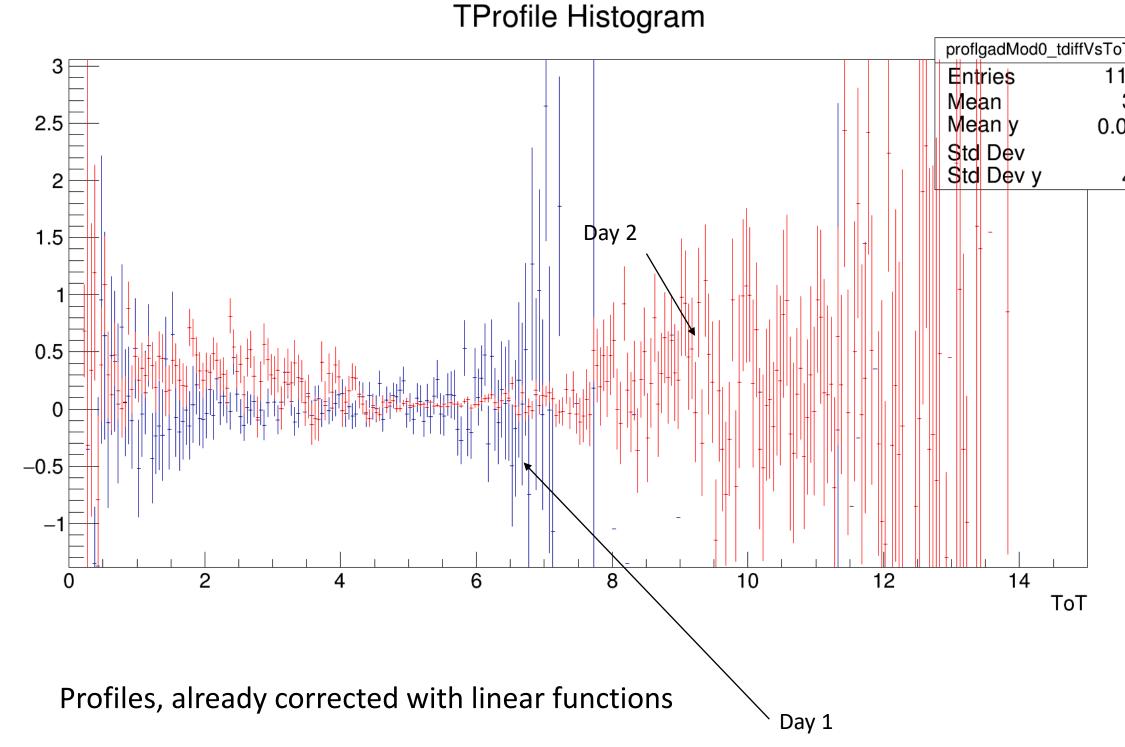




- Drift time distance. Electronics (offset, tdc etc) and ulletdrift velocity. Calibrated initially with Garfield, after that iteratively corrected with data.
- Stored as a table sector, module, angle, distance drift • time.

Can be possible to calibrate with NN if one reduces this to few parameters: module-sector as nodes, angles as input parameter. Target as parameters of fitting function. Or just both of angle and distance as input parameters and then fill the table with them.

Overview of different calibrations



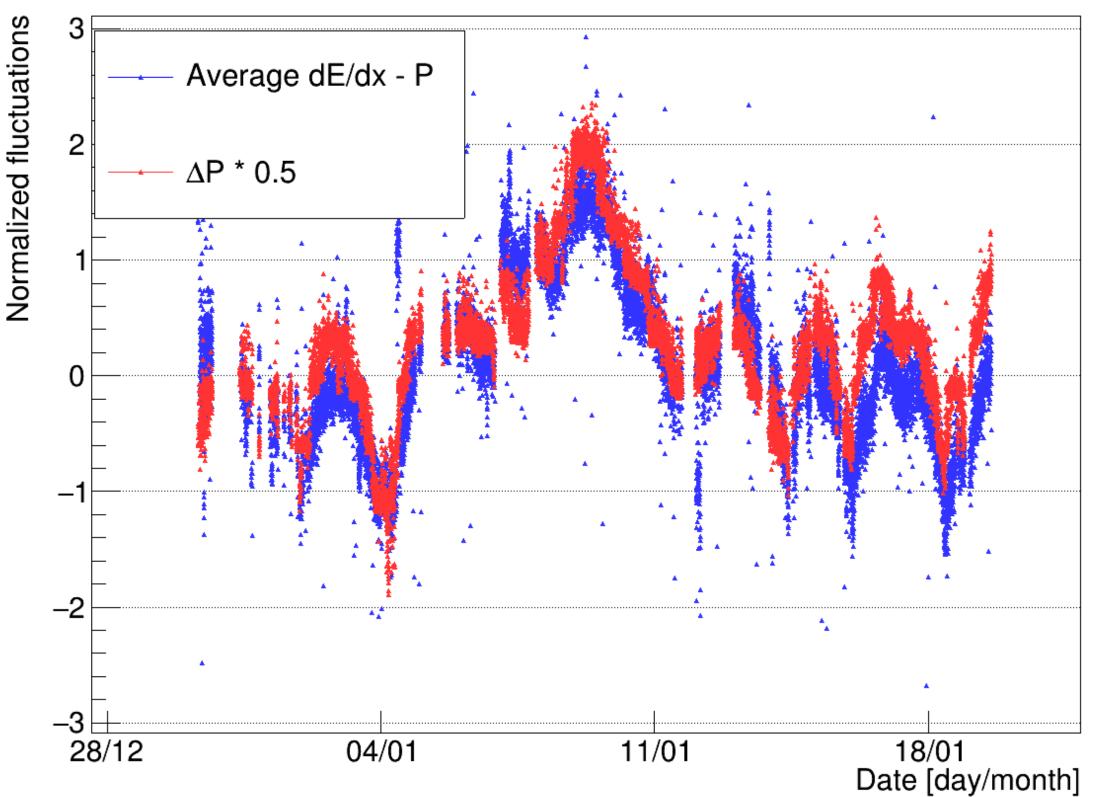
T_ch29	
10870	
3.899	
05128	
1.141	
4.863	

- TO LGAD. Reconstruct events, calculate expected TO from • other ToF detectors. Correction of time-walk with a linear function of a profile, which appears from the fits in each bin.
- Problems for existing hades are at low values, where ulletstatistics is low and has nonlinearities in time-walk. Too low statistics to make it even as a target – bad application of NN

Ionization losses in drift chambers

Reasons to test on MDC:

- Significant fluctuations (5-10%);
- Clear dependence on environmental parameters;
- A lot of environmental parameters being measured.



Correlations between overpressure (red) and ionization losses, corrected on atmospheric pressure (blue). Feb22.

Target - atmospheric pressure vs overpressure

Input parameters:

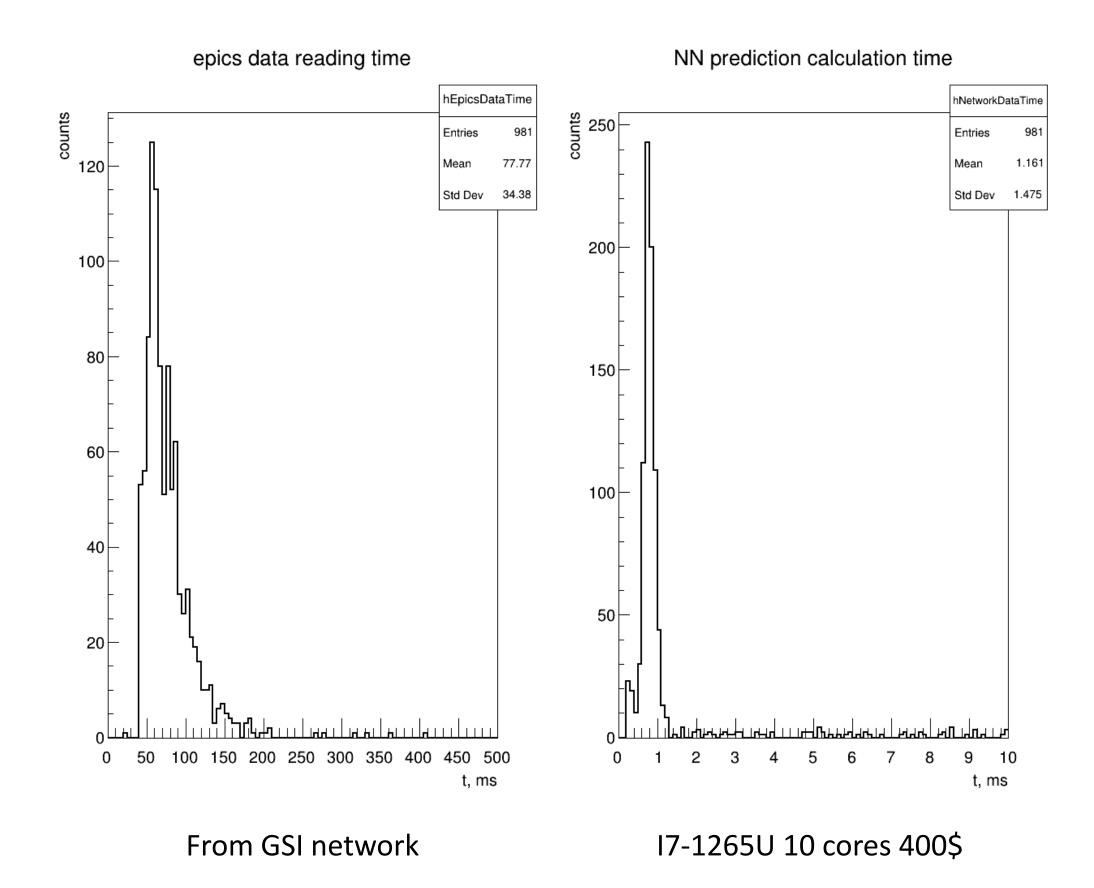
- Atmospheric pressure;
- High voltage;
- CO₂ concentration;
- Overpressure;
- H₂O concentration;
- Dew Point;
- Electronics temperature;

Each dot is a single run, ~100k/24 events, 1-2 min

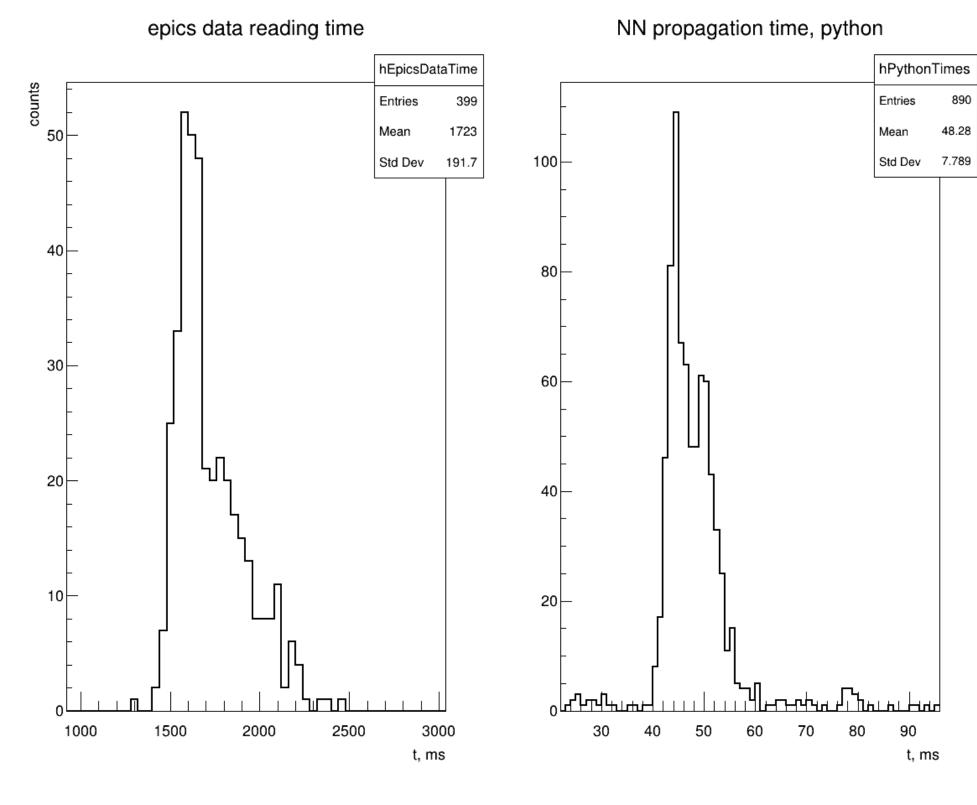
Smooth change with time (~15 min).

Prediction time consumption

Single parameter, simple network



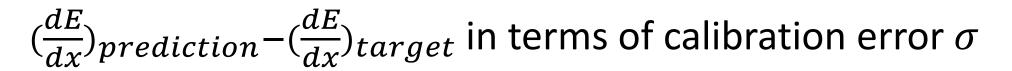
24 parameters, GConv

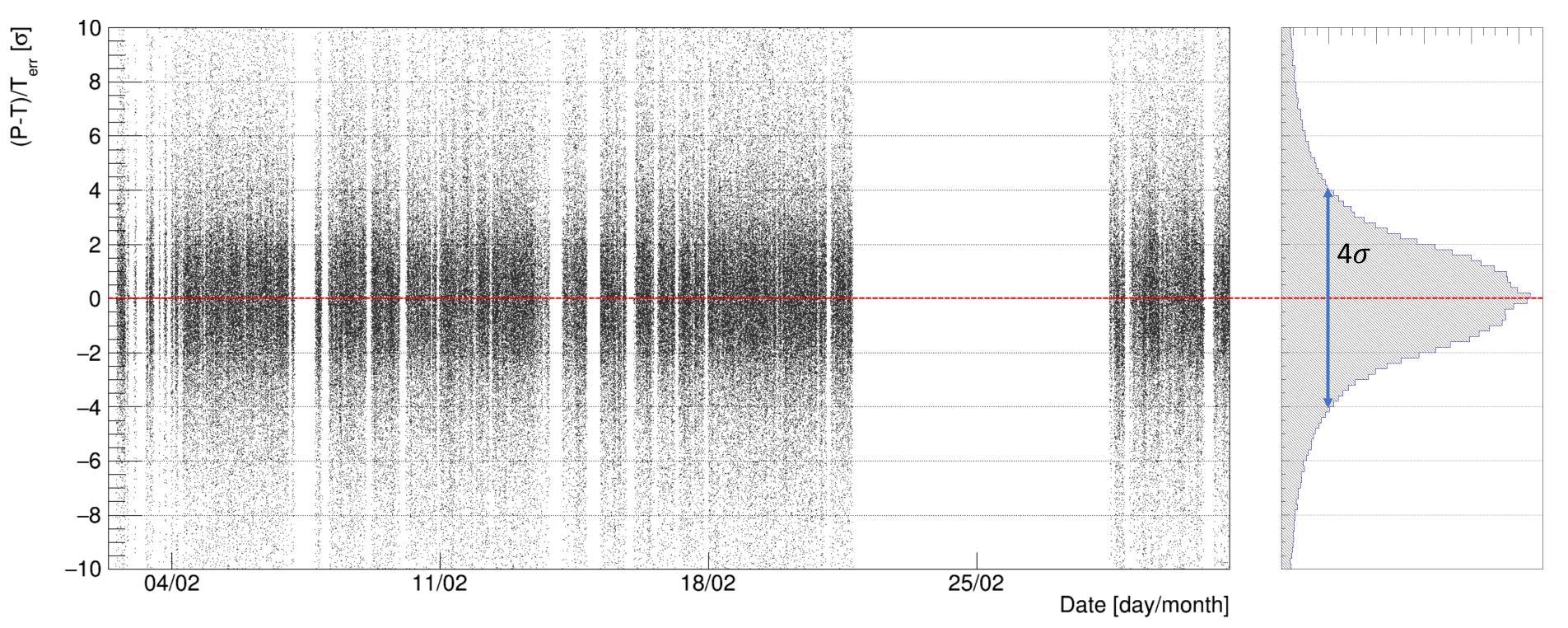


Wi-Fi, 50 MB/s

17-1265U 10 cores 400\$

Prediction Accuracy (training part)





Stable performance over the beam time.

• Compatible with target, the errors are underestimated.

High voltage prediction x_i

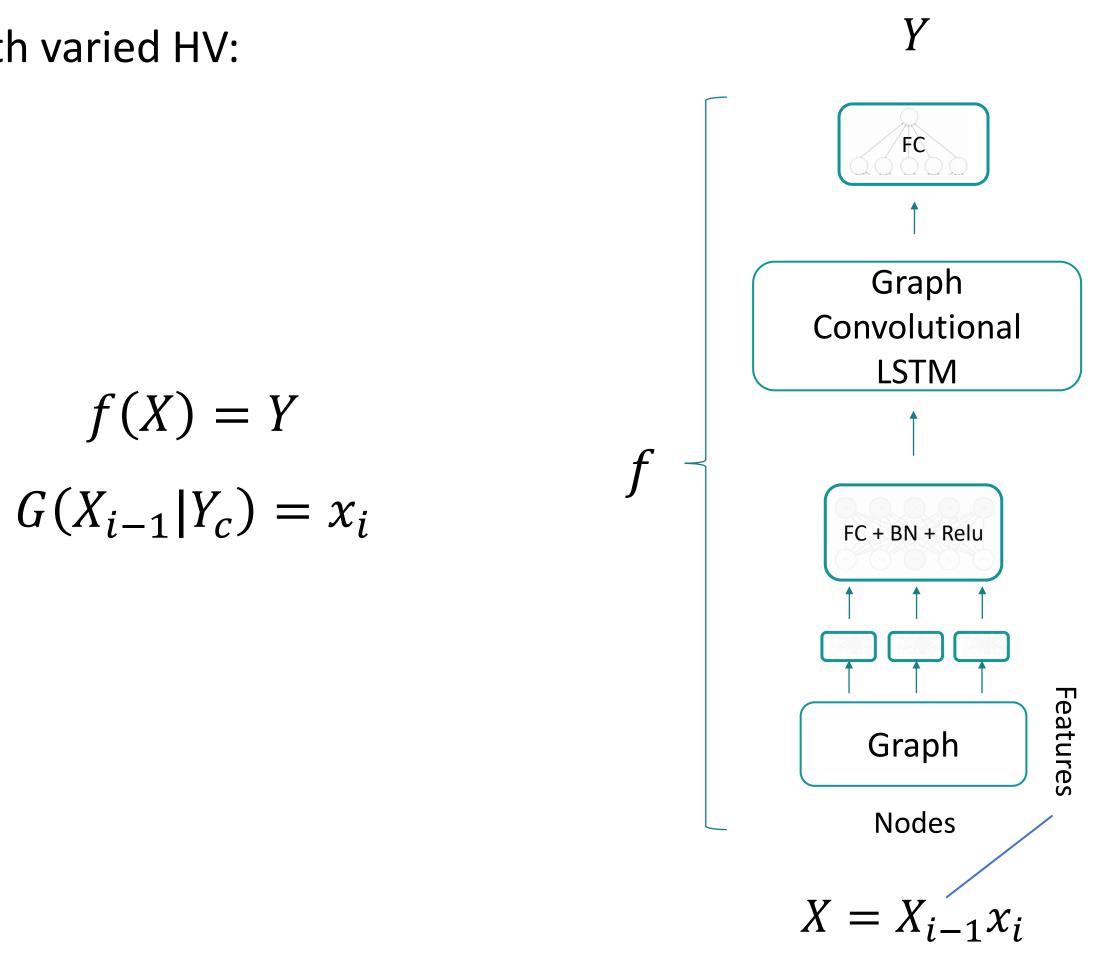
(General) <u>Training procedure</u> if we have data with varied HV:

- 1. Train the model f. Fix parameters.
- 2. Train model G using $|f(X_{i-1}x_i) Y_c|$ as loss.

<u>Sources of generating HV dataset:</u>

- 1. Vary HV during cosmic runs.
- 2. Generate data with Garfield.

Multi-channel prediction



<u>Statistics accumulation is possible this year!</u> (~December)

Software development

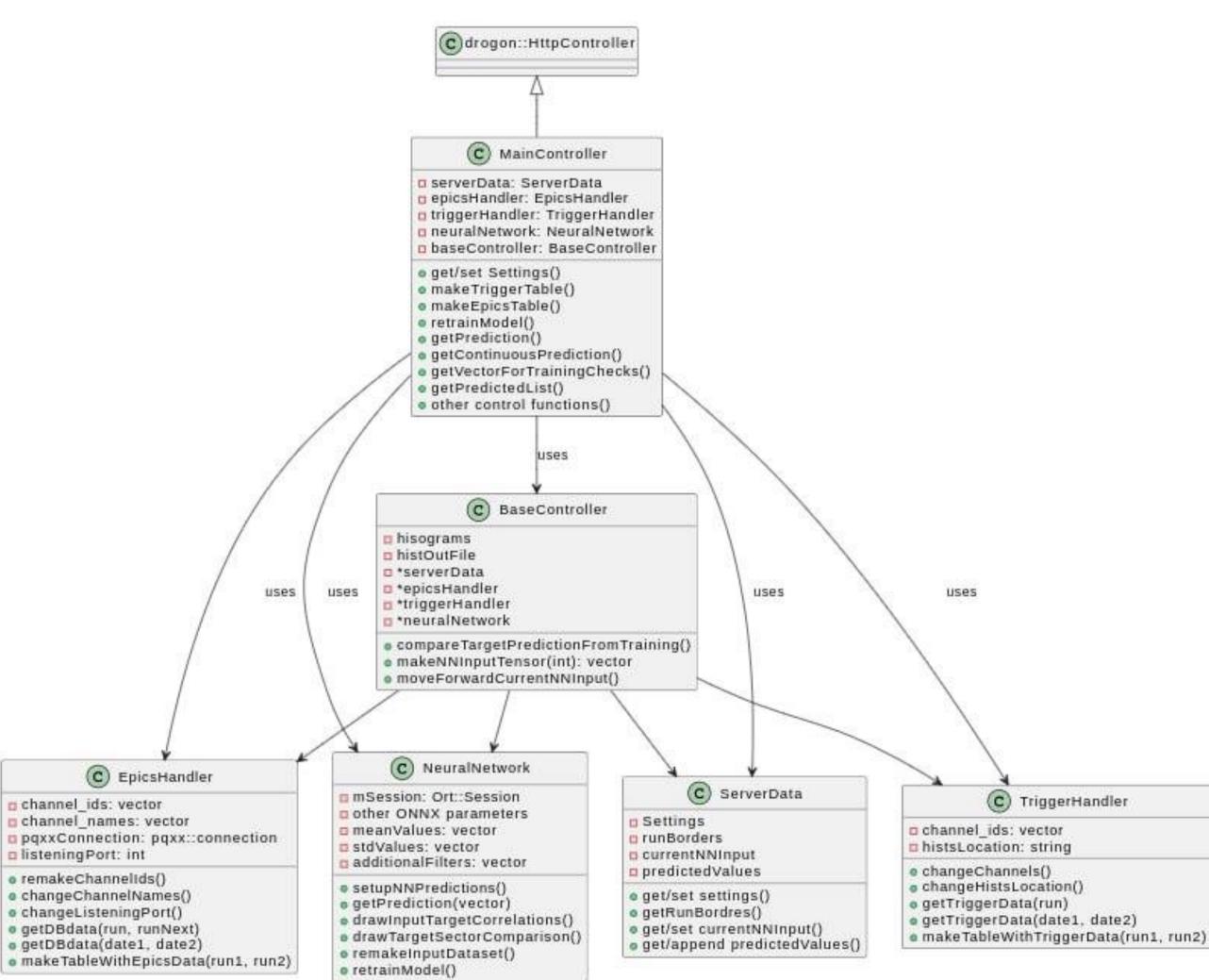
Features:

- Retraining with automated hyperparameter search.
- Automatic training set creation with given:
 - Epics channel names.
 - Trigger channel numbers and DQ files location.
 - List of runs, run borders or experimental files directory.
- Methods to save and change above settings + saves of NN data.
- Automated work with epics database:
 - connection,
 - conversation names-numbers,
 - handle missing data,
 - nn part of input on demand for run / list of runs.
- Automated work with trigger DQ files in the same way as for epics.
- Various methods to check training performance and correlations.

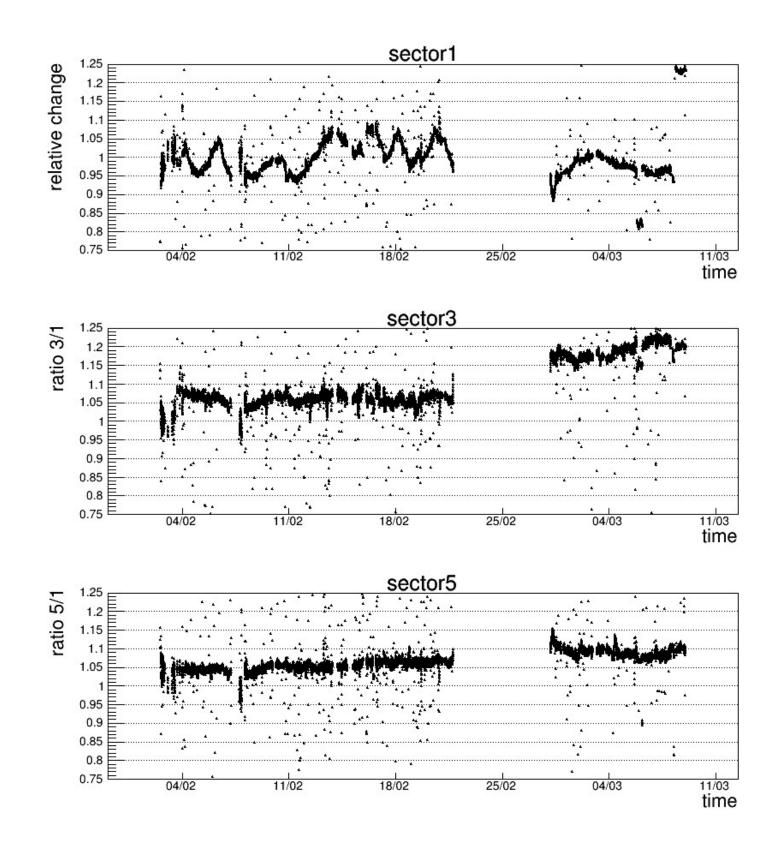
Methods:

- Based on C++ and object-oriented programming paradigm.
- Epics db reading with SQL commands.
- Trigger data reading and graphics with ROOT CERN.
- \succ NN training with pytorch in python and predictions in C++ with ONNX.
- Backend written in Drogon framework for C++.
- Frontend with react.js (little for now).

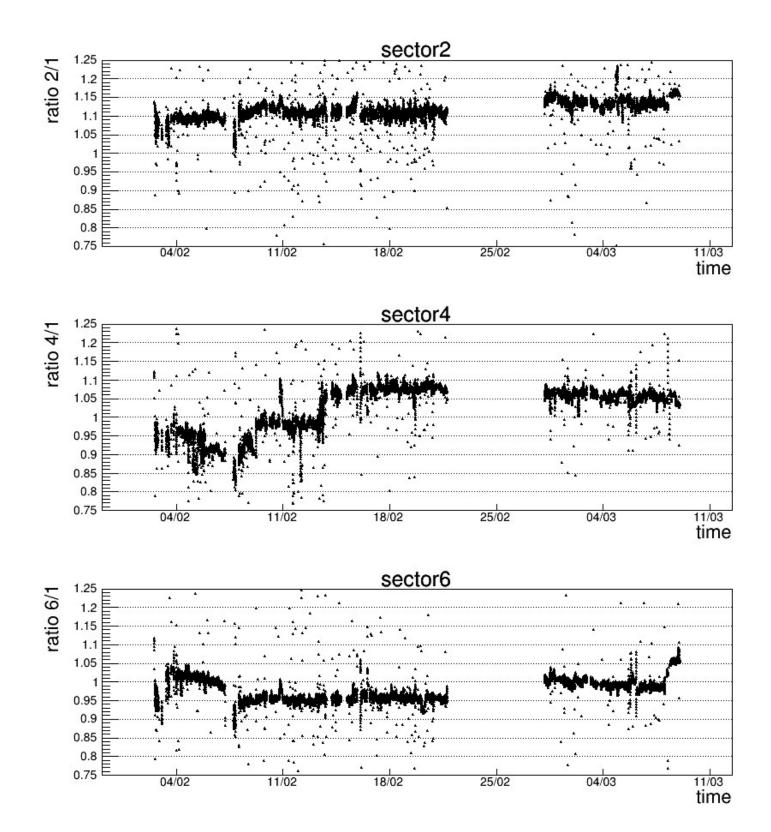
https://github.com/KladovValentin/drogonapp



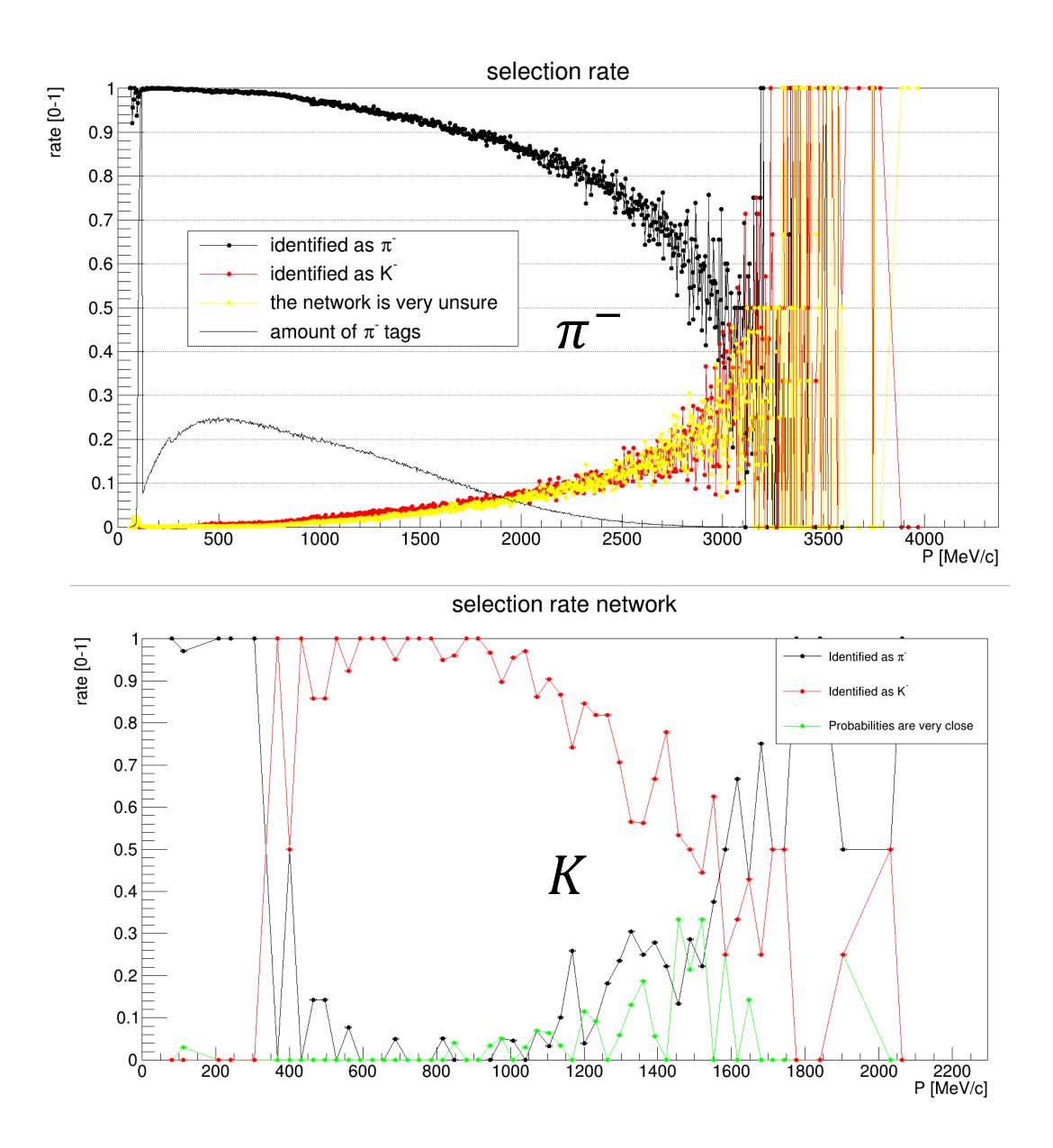
Multi-channel prediction

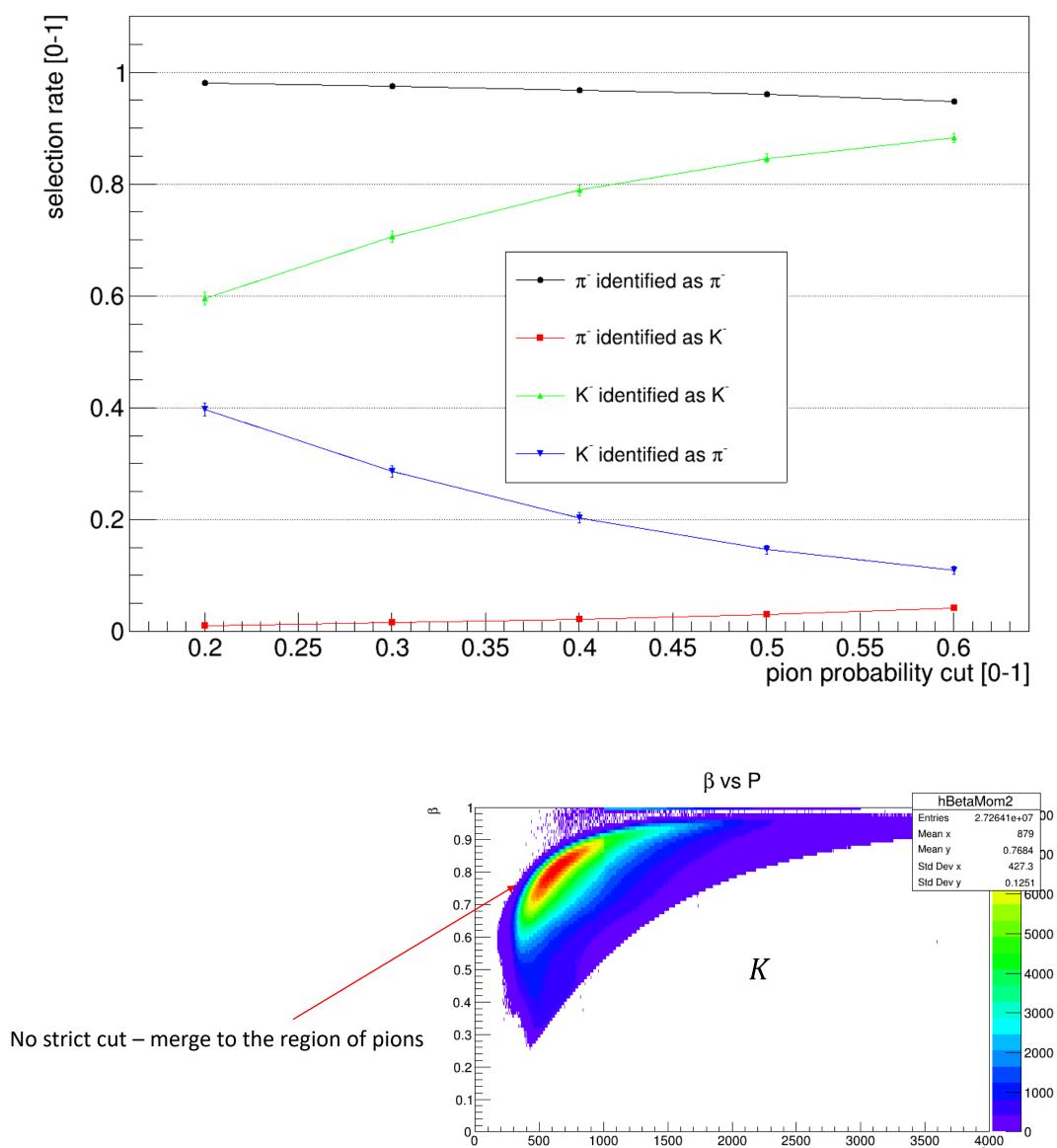


- In general, MDC sectors behave similarly.
- Need to account for differences.
- Some input parameters are shared (Atm. pressure).



Flexibility of pid





P[MeV/c²]

selection efficiencies

