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Synchronous reconstruction 
for high level online triggering

Online calibrations

Real-time reconstruction and calibration

Time 
consuming

• Tracking
• Identification
• Triggering

• Calibrations
• Slow control
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Synchronous reconstruction 
for high level online triggering

Online calibrations

Real-time reconstruction and calibration

Time 
consuming

Can we avoid the loop?
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• Tracking
• Identification
• Triggering

• Calibrations
• Slow control



NN

• Calibration factors

• Recommended settings (HV)

• Anomaly detection

• Environment (P, T)

• Settings (V, beam)

• Trigger rates
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Real-time reconstruction and calibration
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Synchronous reconstruction 
for high level online triggering

Online calibrations

Time 
consuming

• Tracking
• Identification
• Triggering

• Calibrations
• Slow control



HADES experiment

• FAIR Phase Zero experiment;

• Currently running with regular data taking (every 1-2 years);

• Developed infrastructure;

HADES

4 planes x 6 sectors of MDC = 24 chambers

Possible values to predict:

• Drift time (~”measured” distance) – used for track reconstruction. 

• Chamber gain (~”measured” 𝑑𝐸/𝑑𝑥). – used for PID

MDC – mini drift chambers
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Ionization losses in drift chambers

• Significant fluctuations 

(5-10%);

• Clear dependence on 

environmental parameters; 

• Environmental parameters 

are measured and stored.

Correlations between atmospheric pressure (red) and averaged ionization losses (blue). Feb22.

Each dot is a single run, ~100k/24 events, 1-2 min 

Smooth change with time (~15 min).

• Atmospheric pressure;

• High voltage;

• CO2 concentration;

• Overpressure;

• H2O concentration; 

• Dew Point;

• Electronics temperature;

Reasons to test on MDC: Input parameters:
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Multi-channel prediction

→ Represent detector as a graph
(4 planes X 6 sectors)

→ Utilize similarities by convolutions.
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Neural network architecture
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Prediction time consumption

Source Depends on Time

NN Computation speed NN propagation 𝑂(𝑁𝑛𝑜𝑑𝑒𝑠) 50 ± 10 𝑚𝑠 (24 nodes)

Database readout from GSI network ~(𝑁𝑛𝑜𝑑𝑒𝑠) 1 ± 0.1 𝑠 (24 nodes)

Standard run duration (1 data point) - 1 − 2 𝑚𝑖𝑛

Environmental parameter stability interval - ~15 𝑚𝑖𝑛

NN initial training 𝑂(𝑁𝑒𝑝𝑜𝑐ℎ𝑠 ∗ 𝑁𝑛𝑜𝑑𝑒𝑠 ∗ 𝑁𝑟𝑢𝑛𝑠) + Init ~30 𝑚𝑖𝑛 (150 epochs, 24 nodes, 103 runs)

NN retraining 𝑂(𝑁𝑒𝑝𝑜𝑐ℎ𝑠 ∗ 𝑁𝑛𝑜𝑑𝑒𝑠 ∗ 𝑁𝑟𝑢𝑛𝑠) + Init ~1 𝑚𝑖𝑛 (50 epochs, 24 nodes, 102 runs)
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Prediction quality

Simulating new beamtime:

1. Get average 𝑑𝐸/𝑑𝑥 from offline calibration in feb22 data;

2. Train on the part of data, fix most of the parameters after;

3. Predict with added regularization and a regular retraining.
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Significant room for improvements:

1. No temperature information stored;

2. Target offline calibration is unstable.
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Particle identification for HADES

• 𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚
• 𝐶ℎ𝑎𝑟𝑔𝑒
• 𝑇ℎ𝑒𝑡𝑎
• 𝑑𝐸/𝑑𝑥𝑀𝐷𝐶
• 𝑑𝐸/𝑑𝑥𝑇𝑂𝐹
• 𝑇𝑜𝐹
• 𝐷𝑖𝑠𝑡𝑚𝑒𝑡𝑎
• 𝐵𝑒𝑡𝑎
• 𝑀𝑒𝑡𝑎𝑚𝑎𝑡𝑐ℎ
• 𝑀𝑎𝑠𝑠2

• 𝑃𝑝

• 𝑃𝜋+

• 𝑃𝜋−

• 𝑃𝐾+

• 𝑃𝐾−

Input 
parameters

Predicted 
probabilities

Image source: https://doi.org/10.48550/arXiv.1505.07818

• Uses all available information 

simultaneously, allowing for better 

precision and efficiency (“merge”)

• Operates with probabilities, allowing for 

flexible classification 

(change only one parameter to tune)

We have all parameters calibrated online reconstruction identification triggering
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Summary & Outlook

➢ Improvements in the offline dE/dx calibration.

➢ Test on the MDC time-distance calibration.

➢ Fine-tuning for real applications.

➢ Test of HV predictions (slow control).

1. NNs can provide fast (<1s) calibrations with accuracy, 

compatible with usual methods.

2. Synchronous processing can benefit from ML techniques at 

almost all stages, giving faster and/or better results.
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Backup



Overview of different calibrations

• Drift time – distance. Electronics (offset, tdc etc) and 

drift velocity. Calibrated initially with Garfield, 

after that iteratively corrected with data.

• Stored as a table sector, module, angle, distance – drift 

time.

Can be possible to calibrate with NN if one reduces this to 

few parameters: module-sector as nodes, angles as input 

parameter. Target as parameters of fitting function. Or 

just both of angle and distance as input parameters and 

then fill the table with them.distance



Overview of different calibrations

• T0 LGAD. Reconstruct events, calculate expected T0 from 

other ToF detectors. Correction of time-walk with a linear 

function of a profile, which appears from the fits in each 

bin.

• Problems for existing hades are at low values, where 

statistics is low and has nonlinearities in time-walk. 

Too low statistics to make it even as a target – bad 

application of NN
Day 1

Day 2

Profiles, already corrected with linear functions 



Ionization losses in drift chambers

• Significant fluctuations (5-

10%);

• Clear dependence on 

environmental parameters; 

• A lot of environmental 

parameters being measured.

• Atmospheric pressure;

• High voltage;

• CO2 concentration;

• Overpressure;

• H2O concentration; 

• Dew Point;

• Electronics temperature;

Reasons to test on MDC: Input parameters:

Correlations between overpressure (red) and ionization losses, corrected on atmospheric pressure (blue). Feb22.

Each dot is a single run, ~100k/24 events, 1-2 min 

Smooth change with time (~15 min).



Prediction time consumption

From GSI network I7-1265U 10 cores 400$

Single parameter, simple network 24 parameters, GConv

Wi-Fi,  50 MB/s I7-1265U 10 cores 400$



Prediction Accuracy (training part)

(
𝑑𝐸

𝑑𝑥
)𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛−(

𝑑𝐸

𝑑𝑥
)𝑡𝑎𝑟𝑔𝑒𝑡 in terms of calibration error 𝜎

• Stable performance over the beam time.

• Compatible with target, the errors are underestimated.
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High voltage prediction 𝑥𝑖

Multi-channel prediction

Graph 
Convolutional 

LSTM

Graph

Featu
res

Nodes

FC + BN + Relu

FC

𝑌

𝑓 𝑋 = 𝑌

𝐺 𝑋𝑖−1|𝑌𝑐 = 𝑥𝑖Sources of generating HV dataset:

1. Vary HV during cosmic runs.

2. Generate data with Garfield. 
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(General) Training procedure if we have data with varied HV:

1. Train the model 𝑓. Fix parameters.

2. Train model G using |𝑓 𝑋𝑖−1𝑥𝑖 − 𝑌𝑐| as loss.

𝑓

𝑋 = 𝑋𝑖−1𝑥𝑖

Statistics accumulation is possible this year! (~December)
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Software development
Features:

➢ Retraining with automated hyperparameter search.

➢ Automatic training set creation with given:

▪ Epics channel names.

▪ Trigger channel numbers and DQ files location.

▪ List of runs, run borders or experimental files directory.

➢ Methods to save and change above settings + saves of NN data. 

➢ Automated work with epics database:

▪ connection, 

▪ conversation names-numbers, 

▪ handle missing data, 

▪ nn part of input on demand for run / list of runs.

➢ Automated work with trigger DQ files in the same way as for epics.

➢ Various methods to check training performance and correlations.

Methods:

➢ Based on C++ and object-oriented programming paradigm.

➢ Epics db reading with SQL commands.

➢ Trigger data reading and graphics with ROOT CERN.

➢ NN training with pytorch in python and predictions in C++ with ONNX.

➢ Backend written in Drogon framework for C++.

➢ Frontend with react.js (little for now).

Frontend demo here?

Backend diagram here?

https://github.com/KladovValentin/drogonapp

https://github.com/KladovValentin/drogonapp


Multi-channel prediction

• In general, MDC sectors behave similarly.

• Need to account for differences.

• Some input parameters are shared (Atm. pressure).



Flexibility of pid

𝜋−

𝐾

No strict cut – merge to the region of pions

𝐾


