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McCulloch-Pitts Neuron
Output f((w x))

BULLETIN OF
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VOLUME 5, 1943

A LOGICAL CALCULUS OF THE
IDEAS IMMANENT IN NERVOUS ACTIVITY
WARREN S. MCCULLOCH AND WALTER PITTS

FroM THE UNIVERSITY OF ILLINOIS, COLLEGE OF MEDICINE,
DEPARTMENT OF PSYCHIATRY AT THE ILLINOIS NEUROPSYCHIATRIC INSTITUTE,
AND THE UNIVERSITY OF CHICAGO ® 6 o o o

Because of the “all-or-none” character of nervons activity, neural
events and the relations among them can be treated by means of propo-
sitional logic. It is found that the behavior of every net can be described | n Ut
in these terms, with the addition of more complicated logical means for o]
nets containing circles; and that for any logical expression satisfying
certain conditions, one can find a net behaving in the fashion it describes. . d
It is shown that many particular choices among possible neurophysiologi- wit h W.X € O 1
cal assumptions are equivalent, in the sense that for every net behav- ) bl
ing under one assumption, there exists another net which behaves un-
der the other and gives the same results, although perhaps not in the
same time. Various applications of the calculus are discussed.

In algebraic notation: wix; + woxo + ... 4+ wgxg =w' - x def (w,x), and
threshold © step function, 1 if (w,x) > ©

fla) = 0 otherwise

The McCulloch-Pitts neurons represent basic logical functions like AND,
OR, and NOT, but doesn’t have a mechanism to learn the weights w.
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Rosenblatt’s Perceptron

BT

Proposed a learning rule to infer the weights values from tralnlng data.
[} = =
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Output f((w x))

//\

Input
Note, xp = 1 and w, x € R9+1



Linear Classifier

Rosenblatt's Perceptron (also called single layer neural networks) is a
linear classifierx.2

4 Xo = 2x1
3 Observe, that x, = 2x; can also be
5 expressed as
1 Wl
wixi + woxo =0 xo = ——Xxq,
0 x1 w2
_1 .
. where for instance
-3 w1 = —2, Wo = 1.

-4 -3-2-10 1 2 3
Furthermore, observe that aII points lying on the line xo = 2xy satisfy
wixi + woxo = —2x1 + 1xo = 0.
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Linear Classifier & Dot Product

X2

4 —2x1 +1x =0

3 @ What about the vector

2 x=(1,2)

. w w = (w,wn) = (-2,1)?

. @ Vector w is perpendicular to
X1

the line —2xy + 1x, = 0.

i @ Let us calculate the dot
product of w and x.

-4 -3 -2 -1 0
In our example d = 2 and we obtain —2-1+4+1-2=0.
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Linear Classifier & Dot Product (cont.)

Let us consider the weight vector w = (3,0) and vector x = (2,2).

4

3

2

3x1+0x =0
x=(2,2)
|
[
|
] X
w
(wx) _ 32402 _ 9
([wll V32

Geometric interpretation of the dot product: Length of the projection of x
onto the unit vector w/||w||.
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Linear Classifier & Two Half-Spaces

4

3 {x| —2x3 +1x > 0}

{x] = 2x; + 1xo = 0}

The x-space is separated in two half-spaces.
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Linear Classifier & Dot Product (cont.)

@ Observe, that wix; + woxo = 0 implies, that the separating line
always goes through the origin.

e By adding an offset (bias), that is

wop+ wixy +woxo =0 xo = —%Xl —%‘; =y = mx+ b, one can
shift the line arbitrary.
X2 X2
4 4
3 3
2 2
1 / 1 /
0 X1 0 X1
-1 -1
-2 -2
-3 -3
-4 -4
-4-3-2-10 1 2 3 4 -4 -3-2-10 1 2 3 4
wp + wixy + woxo =0 wo + wixy + waxp > threshold

TR ) 29t October 2024 8/33



Linear Classifier & Single Layer NN
Output f(x) e

//\ S S

D) vvvee (@) L

Input -3

[ R ) S VS B oY

Note that xp = 1, f(x) = (w, x). fa3 2101 2 3 4
Given data which we want to separate, that is, a sample
X = {(X]_,y]_), (x27y2)7 R (XN7}/N)} € Rd+1 X {_1, +1}

How to determine the proper values of w such that the “minus” and
“plus” points are separated by f(x)? Infer the values of w from the data
by some learning algorithm.
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Perceptron Learning Algorithm

input : (x1,%1),...,(xn,yv) € R x {—1,+1},n €
R4, max.epoch € N
output: w
begin
Randomly initialize w ;
epoch + 0 ;
repeat
for i < 1to N do
L if y,-(w,x,-} < 0 then
L W< WHnx;y;
epoch < epoch +1
until (epoch = max.epoch) or (no change in w);
L return w
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Perceptron Convergence Theorem
How often one has to cycle through the patterns in the training set?

o If the training data is linearly separable, the perceptron learning
algorithm will converge after a finite number of iterations, meaning it
will find a set of weights that perfectly classify the data.

o If the data is not linearly separable, the perceptron will not converge
and will continue updating its weights indefinitely.

A
=
=
=
Q
=
R
=~
7
S
e

=
&
=
S
S
=
=
B
3
7

SPARTAN

=,

TR ) 20th October 2024 11/33



Perceptron Algorithm Visualization

g ® ° g
< . o L. %
° L]
L]
One epoch terminate if no change in w
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From Perceptron Lossg to Gradient Descent

The parameters to learn are: (wp, wy, wa) = w.
@ What is our loss function Lossg we would like to minimize?

e Where is term w,., = w + x y coming from?

Lossg = E(w) = — Z (W, Xm)Ym
meM

where M denotes the set of all missclassified patterns. Moreover, Lossg is

continuous and piecewise linear and fits in the spirit iterative gradient
descent method

W, =W+ nVE(W) =w+7nxy
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] @ Analyzed the capabilities

The Neural Network Winter and limitations of the

= single-layer perceptron.

@ Proved that single-layer
perceptrons are
fundamentally limited in
their ability to solve
non-linearly separable
problems, such as the XOR
problem.

@ Al shifted their focus to
other methods, particularly
symbolic Al and rule-based

Fceplrons

systems.
Perceptrons: An Introduction to @ Funding agencies and
Computational Geometry. Marvin academic institutions also
Minsky and Seymour Papert, deprioritized neural network
1969. research (dead-end field).
=] (=) = E =
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Hopfield Network

Proc. Natl. Acad. Sci. USA
Vol. 79, pp. 2554-2558, April 1982
Biophysics

Neural networks and physical systems with emergent collective
computational abilities
(associative memory/parallel processing/categorization/ content-addressable memory/fail-soft devices)

J. J. HoPFIELD
Division of Chemistry and Biology, California Institute of Technology, Pasadena, California 91125; and Bell Laboratories, Murray Hill, New Jersey 07974
Contributed by John J. Hopfield, January 15, 1982

ABSTRACT  Computational properties of use to biological or-
ganisms or to the construction of computers can emerge as col-
lective properties of systems having a large number of simple
equivalent compenents (or neurons). The physical meaning of con-
tent-addressable memory is described by an appropriate phase
space flow of the state of a system. A model of such a system is
given, based on aspects of biology but readily ad dtoin-
tegrated circuits. The collective properties of this model produce
a content-addressable memory which correctly yields an entire
memory from any subpart of sufficient size. The algorithm for the
time evolution of the state of the system is based on asynchronous
parallel processing. Additional emergent collective properties in-
clude some capacity for generalization, familiarity recognition,
categorization, error correction, and time sequence retention.
The collective properties are only weakly sensitive to details of the
modeling or the failure of individual devices.
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Hopfield Network Introductory Example

recalled by the memory

@ Suppose we want to store N
binary images in some
memory.

@ The memory should be
content-addressable and
insensitive to small errors.

o We present corrupted
images to the memory (e.g.
our brain) and recall the
corresponding images.

presentation of corrupted images
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Hopfield Network

@ wj; denotes weight
W51 = Wis connection from unit j to
unit /
no unit has connection with
|tse|f w;j =0, Vi

\ @ connections are symmetric
wij = wj;, Vi, Jj

State of unit / can take values +1 and is denoted as S;. State dynamics are
governed by activity rule:

i >
S; =sgn Z w;;Sj | , where sgn(a) = { ji :: z - 8’
J
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Learning Rule in a Hopfield Network

Learning in Hopfield networks:

@ Store a set of desired memories {x(")} in the network, where each
memory is a binary pattern with x; € {—1,+1}.

@ The weights are set using the sum of outer products
1 (n) ()
= 3 A
n

where N denotes the number of units (N can also be some positive
constant, e.g. number of patterns). Given a m x 1 column vector a and
1 x n row vector b. The outer product a® b is defined as the m x n matrix.

al aibi aiby aibs
a | ® [b1 b b3] = arby axby axbs |, m=n=3
as azby azby aszbs
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Learning in Hopfield Network (Example)

Suppose we want to store patterns x(1) = [-1,+1,—1] and
x(®) = [+1, -1, +1].

|
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Learning in Hopfield Netw. (Example) (cont.)

[0 -2 +2
W=3|-2 0 -2
+2 -2 0

Recall: no unit has connection with itself.

The storage of patterns in the network can also be interpreted as
constructing stable states. The condition for patterns to be stable is:

sgn g wiiX; | = xi,Vi.
J

Suppose we present pattern x(1) to the network and want to restore the
corresponding pattern.
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Learning in Hopfield Netw. (Example) (cont.)

Let us assume that the network states are set as follows: S; = x;, Vi. We
can restore pattern x() = [—1, +1, —1] as follows:

3 3
51 =sgn Z w1, S; = -1 Sy =sgn Z woS; | = +1
J=1 j=1
3
53 = sgn Z W3j5j = -1
j=1

Can we also restore the original patterns by presenting “similar” patterns
which are corrupted by noise?
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Updating States in a Hopfield Network

Synchronous updates:

@ all units update their states S; = sgn (ZJ w,-ij) simultaneously.
Asynchronous updates:

@ one unit at a time updates its state. The sequence of selected units
may be a fixed sequence or a random sequence.

Synchronously updating states can lead to oscillation (no convergence to a
stable state).
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Aim of a Hopfield Network

Our aim is that by presenting a corrupted pattern, and by applying iteratively
the state update rule the Hopfield network will settle down in a stable state
which corresponds to the desired pattern.

Hopfield network is a method for
@ pattern completion
@ error correction.

The state of a Hopfield network can be expressed in terms of the energy
function (related to Ising model and spin glass theory in Physics).

1
E=—3 Z w;S;S;
I7.l

Hopfield observed that if a state is a local minimum in the energy
function, it is also a stable state for the network.
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Basin of Attraction and Stable States

\ /

N —

stable states

Within the space the stored patterns x(") are acting like attractors.
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Haykin's Digit Example
Suppose we stored the following digits in the Hopfield network:

Energy = -67.73 Energy = -67.87 Energy = -82.33 Energy = -86.6 Energy = -77.73
Pattern 0 attern 1 attern attern 3 Pattern 4
Energy = -90.47 Energy = -83.13 Energy = -66.93
attern 6 Pattern Pattern box
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Updated States of Corrupted Digit 6

Energy = -10.27

Start Pattern

Energy = -18.07

Updated unit 80

Energy = -26.8

updated unit 117

Energy = -12.2

updated unit 40

Energy = -20.4

n
updated unit 12

Energy = -20.67

Updated unit 3

Stibor (GSI)

Energy = -13.6

Updated unit 39

Energy = -22.2

n
updated unit 114

Energy = -30.13

updated unit 48

GSI/FAIR Al Workshop

Energy = -14.87

updated unit 81

Energy = -23.33

Updated unit 115

Energy = -31.47

Updated unit 6

Energy = -15.87

Updated unit 98

Energy = -25.73

Energy = -34.4

Updated unit 79
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Updated States of Corrupted Digit 6 (cont.)

Energy = -36.73

Energy = -38.4

] ]
u n
updated unit 113 updated unit 57
Energy = -47.6 Energy = -50.4

| |
n n
]
updated unit 83

Energy = -60.67

updated unit 71

n
HE
updated unit 31

Stibor (GSI)

Energy = -63.33

E )
updated unit 58

Energy = -41.07 Energy = -45.27

n u n
] ] ]
n n
updated unit 103 updated unit 18 updated unit 109

Energy = -56.47

Energy = -42.4

Energy = -52.67

n u n
_ N ] HE L |
updated unit 77 updated unit 26 updated unit 15

Energy = -71.27

Energy = -58.4

Energy = -64.47

I n n
_ N ] HE ]
updated unit 16 updated unit 29 updated unit 83

20th October 2024

Energy = -68
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Updated States of Corrupted Digit 6 (cont.)
The resulting pattern (stable state with energy —90.47) matches the

desired pattern.

Energy = -73.73 Energy = -77.27
u n
]
Updated unit 72 Updated unit 90
Energy = -90.47 Energy = -90.47
Updated unit 73 Original Pattern 6

T.Stibor (GSI)

Energy = -81.47 Energy = -84.27 Energy = -87.33
Updaled unit 19 Eupdaled unit 21 Eupdaled unit 25
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Hopfield Networks Summary

@ Learning: determine the weight matrix from the data with the outer
product.

o Memory: “knowledge” is stored in the weight matrix.

@ Queries to memory: apply state update rule until energy is minimized
(local minimum).

John Hopfield laid the groundwork for:
@ Renewed theoretical interest and connections to Physics.
@ Neural network applications for optimization.
@ Paved the way for recurrent networks.

@ Revival of interest in multilayer networks and backpropagation.
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Backpropagation the Heart of Neural Networks

Adjust weights of connections within the network to minimize the error
between the predicted and actual output.
History:

@ The minimisation of errors through gradient descent (Cauchy 1847).
o ...

e Taylor Expansion of the Accumulated Rounding Error (Seppo
Linnainmaa 1970 Master Thesis, backpropagation modern version).
° ..

@ Learning representations by back-propagating errors (Rumelhart,
Hinton and Williams, 1986).

Who Invented Backpropagation? (Excellent article by Jiirgen Schmidhuber).
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https://people.idsia.ch/~juergen/who-invented-backpropagation.html

Learning in Neural Networks with Backpropagation

minimize 1AW (W FWOX
D) 4 @)  b®) _ |2

parameters to fit

W), b3

W, p2)

Core idea:
@ Calculate error of loss function and change weights
and biases based on output.
@ These “error” measurements for each unit can be
used to calculate the partial derivatives.

@ Use partial derivatives with gradient descent for
updating weights and biases and minimizing loss
function.

Problem: At which magnitude one shall change e.g.
weight W,-J(-l) based on error of y»?
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Learning in Neural Networks with Backpropagation (cont.)

Input: x1,x2, output: 353),323), target: yi1,y» and g(+) is activation
function. NN calculates? g(W® g(WMx)).

EW) =3[~ P+ (@ = v2)?| = 2@ — y|P

2 2 2 2
- WD WD WP s W D - )
D+ DD WD DD P

23 — w® 42 a® = g(z(3))
~
2x1  2x4 4x1

=W Wi+ Wi o < g(:f?)

zéz) = Wz(é)xo + Wz(%)xl + Wz(;)xz 352) = g(zéz))

Forward pass
N

Z§2) = W3(é)x0 + Wﬁ)x]_ + W:S)Xz ag2) = g(z§2))

D w0 (@)
~ =~
3x1 3x3 3x1

2Notation adapted from Andew Ng's slides.
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Learning in Neural Networks with Backpropagation (cont.)

For each node we calculate 5}1), that is, error of unit j in layer /, because

%E(W) = aj(/)5§/+1)_ Note ® is element wise multiplication.

EW) = § | = 11)2 + (3 = 2)?] = 4[1a® —y?
60 = @B —y) o g'(z®)
6@ = (W T0) o g/(2(2)

Note 6(1) is the input, so no term.

Backward pass
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Learning in Neural Networks with Backpropagation (cont.)

Backpropagation = forward pass & backward pass

Given labeled training data (x1,y1), .., (Xn, YN)-

Set Af.jl) =0 for all /,/,j. Value A will be used as accumulators for
computing partial derivatives.
Forn=1to N

@ Forward pass, compute z(? a(® z(3) aB) . z(D a(L)

@ Backward pass, compute 5(L),5(L_1), .. .,6(2)

o Accumulate partial derivate terms, A) := A() 4 50+ (a())T
Finally calculated partial derivatives for each parameter:

ﬁE(W) = ﬁAfj’) and use these in gradient descent.
{

See interactive demo.
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Neural Networks vs. Kernel Methods (1995 - 2012)

Support Vector Machines and Kernel Methods were favorite methods in
the field of machine learning.

Neural networks suffered from:

@ Slow training time: Took usually weeks and made experimentation
and tuning difficult.

@ Vanishing and exploding gradient problem: Especially severe with
sigmoid and tanh activation functions.

@ Lack of labeled data sets.

o Lack of neural network frameworks (TensorFlow, PyTorch, MXNet,
etc...): Usually Matlab code.
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Era of Deep Learning Neural Networks

Geoffrey Hinton zneren e wazoey
e o ComputerScrce, Ut o Tt P
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e aring e
. A1 208 o 2001 200 o
Leaming nteml epresentaions by eorpropagaton ss130 1085
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ImageNet Classification with Deep Convolutional
Neural Networks

Alex Krizhevsky Tlya Sutskever Geoffrey E. Hinton
 Universy of Toonto University of Toronto University of Toronto
zecs. 0t o.ca ilyagcs.utoronto.ca hinton@cs.utoronto.ca
Abstract

‘We trained a large. deep convolutional neural netsork to classify the 1.2 million
High esoluion mages i the mageNet LSVRC.2010contst i the 1000 dif
ferent classes. Or data, we achieved top-1 and top-5 error rates of 37.5%
B e e i e e e T
il ok, which has 60 millon pasametes ind 650,000 peurons. consists
of five convolutional Iayers. some of which are followed by max-pooling layers

ation of the convoluion operution. T rduce vefing in the uly w....mm
layers " led “dr

that m\wcd e it o o s e mndcl m vhc
ILS)
i % il otk iy
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Why are Deep Neural Networks so successful?

Deep neural networks

Traditional machine
learning algorithms

Prediction accuracy

Amount of data
Deep Neural Networks (Backpropagation) are universal, that is, applicable
to a large class of problems: Vision, speech, text, ... and scale with data.
Backpropagation (forward + backward pass) is intrinsically linked to
matrix multiplication (GPU’s, TPU'’s).

TR ) 20th October 2024 33/33



	pbs@ARFix@1: 
	pbs@ARFix@2: 
	pbs@ARFix@3: 
	pbs@ARFix@4: 
	pbs@ARFix@5: 
	pbs@ARFix@6: 
	pbs@ARFix@7: 
	pbs@ARFix@8: 
	pbs@ARFix@9: 
	pbs@ARFix@10: 
	pbs@ARFix@11: 
	pbs@ARFix@12: 
	pbs@ARFix@13: 
	pbs@ARFix@14: 
	pbs@ARFix@15: 
	pbs@ARFix@16: 
	pbs@ARFix@17: 
	pbs@ARFix@18: 
	pbs@ARFix@19: 
	pbs@ARFix@20: 
	pbs@ARFix@21: 
	pbs@ARFix@22: 
	pbs@ARFix@23: 
	pbs@ARFix@24: 
	pbs@ARFix@25: 
	pbs@ARFix@26: 
	pbs@ARFix@27: 
	pbs@ARFix@28: 
	pbs@ARFix@29: 
	pbs@ARFix@30: 
	pbs@ARFix@31: 
	pbs@ARFix@32: 
	pbs@ARFix@33: 


