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McCulloch-Pitts Neuron

x1 x2 xd

x1

w1 w2 wd

b b b b b

Input

Output f (〈w, x〉)

with w, x ∈ {0, 1}d

In algebraic notation: w1x1 + w2x2 + . . .+ wdxd = wT · x
def
= 〈w, x〉, and

threshold Θ step function,
f (a) =

{
1 if 〈w, x〉 ≥ Θ
0 otherwise

The McCulloch-Pitts neurons represent basic logical functions like AND,
OR, and NOT, but doesn’t have a mechanism to learn the weights w.
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Rosenblatt’s Perceptron

x0 x1 xd

x1

w0 w1 wd

b b b b b

Input

Output f (〈w, x〉)

Note, x0 = 1 and w, x ∈ R
d+1

Proposed a learning rule to infer the weights values from training data.
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Linear Classifier

Rosenblatt’s Perceptron (also called single layer neural networks) is a
linear classifier.
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Observe, that x2 = 2x1 can also be
expressed as

w1x1 + w2x2 = 0⇔ x2 = −
w1

w2
x1,

where for instance

w1 = −2, w2 = 1.

Furthermore, observe that all points lying on the line x2 = 2x1 satisfy
w1x1 + w2x2 = −2x1 + 1x2 = 0.
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Linear Classifier & Dot Product
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What about the vector
w = (w1,w2) = (−2, 1)?

Vector w is perpendicular to
the line −2x1 + 1x2 = 0.

Let us calculate the dot
product of w and x.

In our example d = 2 and we obtain −2 · 1 + 1 · 2 = 0.
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Linear Classifier & Dot Product (cont.)

Let us consider the weight vector w = (3, 0) and vector x = (2, 2).
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〈w,x〉
‖w‖ = 3·2+0·2√

32
= 2

Geometric interpretation of the dot product: Length of the projection of x
onto the unit vector w/‖w‖.
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Linear Classifier & Two Half-Spaces
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The x-space is separated in two half-spaces.
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Linear Classifier & Dot Product (cont.)

Observe, that w1x1 + w2x2 = 0 implies, that the separating line
always goes through the origin.

By adding an offset (bias), that is
w0 + w1x1 + w2x2 = 0⇔ x2 = −

w1
w2
x1 −

w0
w2
≡ y = mx + b, one can

shift the line arbitrary.
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w0 + w1x1 + w2x2 > threshold
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Linear Classifier & Single Layer NN
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Note that x0 = 1, f (x) = 〈w, x〉.

Given data which we want to separate, that is, a sample
X = {(x1, y1), (x2, y2), . . . , (xN , yN)} ∈ R

d+1 × {−1,+1}.

How to determine the proper values of w such that the “minus” and
“plus” points are separated by f (x)? Infer the values of w from the data
by some learning algorithm.

T.Stibor (GSI) GSI/FAIR AI Workshop 29th October 2024 9 / 33



Perceptron Learning Algorithm

input : (x1, y1), . . . , (xN , yN) ∈ R
d+1 × {−1,+1}, η ∈

R+,max.epoch ∈ N

output: w

begin

Randomly initialize w ;
epoch← 0 ;
repeat

for i ← 1 to N do

if yi〈w, xi 〉 ≤ 0 then
w← w + ηxi yi

epoch← epoch + 1
until (epoch = max.epoch) or (no change in w);
return w
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Perceptron Convergence Theorem
How often one has to cycle through the patterns in the training set?

If the training data is linearly separable, the perceptron learning
algorithm will converge after a finite number of iterations, meaning it
will find a set of weights that perfectly classify the data.

If the data is not linearly separable, the perceptron will not converge
and will continue updating its weights indefinitely.
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Perceptron Algorithm Visualization
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One epoch terminate if no change in w
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From Perceptron LossΘ to Gradient Descent

The parameters to learn are: (w0,w1,w2) = w.

What is our loss function LossΘ we would like to minimize?

Where is term wnew = w + ηx y coming from?

LossΘ =̂E (w) = −
∑

m∈M
〈w, xm〉ym

whereM denotes the set of all missclassified patterns. Moreover, LossΘ is
continuous and piecewise linear and fits in the spirit iterative gradient

descent method
wnew = w + η∇E (w) = w + ηx y

T.Stibor (GSI) GSI/FAIR AI Workshop 29th October 2024 13 / 33



The Neural Network Winter

Perceptrons: An Introduction to
Computational Geometry. Marvin
Minsky and Seymour Papert,

1969.

Analyzed the capabilities
and limitations of the
single-layer perceptron.

Proved that single-layer
perceptrons are
fundamentally limited in
their ability to solve
non-linearly separable
problems, such as the XOR
problem.

AI shifted their focus to
other methods, particularly
symbolic AI and rule-based
systems.

Funding agencies and
academic institutions also
deprioritized neural network
research (dead-end field).

T.Stibor (GSI) GSI/FAIR AI Workshop 29th October 2024 14 / 33



Hopfield Network
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Hopfield Network Introductory Example

Suppose we want to store N

binary images in some
memory.

The memory should be
content-addressable and
insensitive to small errors.

We present corrupted
images to the memory (e.g.
our brain) and recall the
corresponding images.

presentation of corrupted images

recalled by the memory
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Hopfield Network

S1

S2

S3

S4

S5

w51 = w15

wij denotes weight
connection from unit j to
unit i

no unit has connection with
itself wii = 0, ∀i

connections are symmetric
wij = wji , ∀i , j

State of unit i can take values ±1 and is denoted as Si . State dynamics are
governed by activity rule:

Si = sgn



∑

j

wijSj


 , where sgn(a) =

{
+1 if a ≥ 0,
−1 if a < 0
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Learning Rule in a Hopfield Network

Learning in Hopfield networks:

Store a set of desired memories {x(n)} in the network, where each
memory is a binary pattern with xi ∈ {−1,+1}.

The weights are set using the sum of outer products

wij =
1

N

∑

n

x
(n)
i x

(n)
j ,

where N denotes the number of units (N can also be some positive
constant, e.g. number of patterns). Given a m × 1 column vector a and
1×n row vector b. The outer product a⊗b is defined as the m×n matrix.




a1
a2
a3


⊗ [b1 b2 b3] =




a1b1 a1b2 a1b3
a2b1 a2b2 a2b3
a3b1 a3b2 a3b3


 , m = n = 3
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Learning in Hopfield Network (Example)

Suppose we want to store patterns x(1) = [−1,+1,−1] and
x(2) = [+1,−1,+1].

[
−1
+1
−1

]
⊗ [−1,+1,−1] =




+1 −1 +1
−1 +1 −1
+1 −1 +1




+

[
+1
−1
+1

]
⊗ [+1,−1,+1] =




+1 −1 +1
−1 +1 −1
+1 −1 +1



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Learning in Hopfield Netw. (Example) (cont.)

W =
1

3




0 −2 +2
−2 0 −2
+2 −2 0




Recall: no unit has connection with itself.

The storage of patterns in the network can also be interpreted as
constructing stable states. The condition for patterns to be stable is:

sgn


∑

j

wijxi


 = xi ,∀i .

Suppose we present pattern x(1) to the network and want to restore the
corresponding pattern.
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Learning in Hopfield Netw. (Example) (cont.)

Let us assume that the network states are set as follows: Si = xi , ∀i . We
can restore pattern x(1) = [−1,+1,−1] as follows:

S1 = sgn




3∑

j=1

w1jSj


 = −1 S2 = sgn




3∑

j=1

w2jSj


 = +1

S3 = sgn




3∑

j=1

w3jSj


 = −1

Can we also restore the original patterns by presenting “similar” patterns
which are corrupted by noise?
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Updating States in a Hopfield Network

Synchronous updates:

all units update their states Si = sgn
(∑

j wijSj

)
simultaneously.

Asynchronous updates:

one unit at a time updates its state. The sequence of selected units
may be a fixed sequence or a random sequence.

Synchronously updating states can lead to oscillation (no convergence to a
stable state).

S1 = +1 S2 = −1

1

1
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Aim of a Hopfield Network

Our aim is that by presenting a corrupted pattern, and by applying iteratively
the state update rule the Hopfield network will settle down in a stable state
which corresponds to the desired pattern.

Hopfield network is a method for

pattern completion

error correction.

The state of a Hopfield network can be expressed in terms of the energy
function (related to Ising model and spin glass theory in Physics).

E = −
1

2

∑

i ,j

wijSiSj

Hopfield observed that if a state is a local minimum in the energy
function, it is also a stable state for the network.
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Basin of Attraction and Stable States

basin of attraction
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stable states

Within the space the stored patterns x(n) are acting like attractors.

T.Stibor (GSI) GSI/FAIR AI Workshop 29th October 2024 24 / 33



Haykin’s Digit Example
Suppose we stored the following digits in the Hopfield network:

Energy = −67.73

Pattern 0

Energy = −67.87

Pattern 1

Energy = −82.33

Pattern 2

Energy = −86.6

Pattern 3

Energy = −77.73

Pattern 4

Energy = −90.47

Pattern 6

Energy = −83.13

Pattern 9

Energy = −66.93

Pattern box
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Updated States of Corrupted Digit 6

Energy = −10.27

Start Pattern

Energy = −12.2

updated unit 40

Energy = −13.6

updated unit 39

Energy = −14.87

updated unit 81

Energy = −15.87

updated unit 98

Energy = −18.07

updated unit 80

Energy = −20.4

updated unit 12

Energy = −22.2

updated unit 114

Energy = −23.33

updated unit 115

Energy = −25.73

updated unit 49

Energy = −26.8

updated unit 117

Energy = −29.67

updated unit 3

Energy = −30.13

updated unit 48

Energy = −31.47

updated unit 6

Energy = −34.4

updated unit 79
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Updated States of Corrupted Digit 6 (cont.)

Energy = −36.73

updated unit 113

Energy = −38.4

updated unit 57

Energy = −41.07

updated unit 103

Energy = −42.4

updated unit 18

Energy = −45.27

updated unit 109

Energy = −47.6

updated unit 83

Energy = −50.4

updated unit 71

Energy = −52.67

updated unit 77

Energy = −56.47

updated unit 26

Energy = −58.4

updated unit 15

Energy = −60.67

updated unit 31

Energy = −63.33

updated unit 58

Energy = −64.47

updated unit 16

Energy = −68

updated unit 29

Energy = −71.27

updated unit 88
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Updated States of Corrupted Digit 6 (cont.)
The resulting pattern (stable state with energy −90.47) matches the
desired pattern.

Energy = −73.73

updated unit 72

Energy = −77.27

updated unit 90

Energy = −81.47

updated unit 19

Energy = −84.27

updated unit 21

Energy = −87.33

updated unit 25

Energy = −90.47

updated unit 73

Energy = −90.47

Original Pattern 6
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Hopfield Networks Summary

Learning: determine the weight matrix from the data with the outer
product.

Memory: “knowledge” is stored in the weight matrix.

Queries to memory: apply state update rule until energy is minimized
(local minimum).

John Hopfield laid the groundwork for:

Renewed theoretical interest and connections to Physics.

Neural network applications for optimization.

Paved the way for recurrent networks.

Revival of interest in multilayer networks and backpropagation.
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Backpropagation the Heart of Neural Networks

Adjust weights of connections within the network to minimize the error
between the predicted and actual output.

History:

The minimisation of errors through gradient descent (Cauchy 1847).

...

Taylor Expansion of the Accumulated Rounding Error (Seppo
Linnainmaa 1970 Master Thesis, backpropagation modern version).

...

Learning representations by back-propagating errors (Rumelhart,
Hinton and Williams, 1986).

Who Invented Backpropagation? (Excellent article by Jürgen Schmidhuber).
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Neural Networks vs. Kernel Methods (1995 - 2012)

Support Vector Machines and Kernel Methods were favorite methods in
the field of machine learning.

Neural networks suffered from:

Slow training time: Took usually weeks and made experimentation
and tuning difficult.

Vanishing and exploding gradient problem: Especially severe with
sigmoid and tanh activation functions.

Lack of labeled data sets.

Lack of neural network frameworks (TensorFlow, PyTorch, MXNet,
etc...): Usually Matlab code.
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Era of Deep Learning Neural Networks
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Why are Deep Neural Networks so successful?

Amount of data

P
re
d
ic
ti
on

ac
cu
ra
cy

Traditional machine
learning algorithms

Deep neural networks

Deep Neural Networks (Backpropagation) are universal, that is, applicable
to a large class of problems: Vision, speech, text, . . . and scale with data.
Backpropagation (forward + backward pass) is intrinsically linked to
matrix multiplication (GPU’s, TPU’s).
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