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Cherenkov Radiation
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* Cherenkov Radiation (photons) emitted by a 2
particle moving in a medium with a speed greater i 4

Sparticle = Pct

than the speed of light in that medium. \

* These photons form a cone, which gives a ring on
the photodetector plane.
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the photodetector plane.

* These rings are conventionally fitted with Hough
Transform.



Cherenkov Radiation

* Cherenkov Radiation (photons) emitted by a
particle moving in a medium with a speed greater
than the speed of light in that medium.

* These photons form a cone, which gives a ring on
the photodetector plane.

* These rings are conventionally fitted with Hough
Transform.
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Can you generate a diagram showing working of hough transform

INPUT IMAGE EDGE DETECTION HOUGH -~
= INPUGT -~ ey T o5

- RANSROR-"
e, :;"1\ — TETAGORM
)

Here's a diagram illustrating the working of the Hough Transform, depicting the steps from the
input image, through edge detection, to the Hough space where line intersections are visualized.
Each step is annotated to help show how edge points from the input contribute to sinusoidal
curves in Hough space, forming peaks at potential lines. Let me know if you'd like any adjustments

or additional details!



Hough Transform

* The Hough Transform complexity increases

significantly with the number of parameters
involved i.e O (A" ?) where A is the size of the

image space and m is the number of parameters'.

1. Shapiro, Linda and Stockman, George. "Computer Vision", Prentice-Hall, Inc. 2001
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Hough Transform

* The Hough Transform complexity increases

significantly with the number of parameters
involved i.e O (A" ?) where A is the size of the

image space and m is the number of parameters'.
 ~10 MHz trigger rate 1s expected in CBM/FAIR
and a faster algorithm will be needed to speed up

the online analysis.

* Can Deep Learning algorithms help?

1. Shapiro, Linda and Stockman, George. "Computer Vision", Prentice-Hall, Inc. 2001



Hough Transform

The Hough Transform complexity increases
significantly with the number of parameters

involved i.e O (A" ?) where A is the size of the
image space and m is the number of parameters'.

~10 MHz trigger rate is expected in CBM/FAIR
and a faster algorithm will be needed to speed up
the online analysis.

Can Deep Learning algorithms help?

U-Net architecture already able to find rings in
high density region’.

1. Shapiro, Linda and Stockman, George. "Computer Vision", Prentice-Hall, Inc. 2001
2. https://indico.nikhef.nl/event/4875/contributions/20267/attachments/8238/11744/Kisel EuCAIFCon_2024.pdf
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https://indico.nikhef.nl/event/4875/contributions/20267/attachments/8238/11744/Kisel_EuCAIFCon_2024.pdf

U-Net Model

* Originally proposed for medical image segmentation

to search for tumors in MRI images?>. . .
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Unet architecture?

3. https://medium.com/@ashishjamarkattel 1 23/image-segmentation-computer-vision-ea4e6{833bc5
4. https://arxiv.org/pdf/1505.04597.pdf



U-Net Model

* Originally proposed for medical image segmentation
to search for tumors in MRI images?>.

MRI SCAN

* The U-Net architecture follows an encoder-decoder
cascade structure, where the encoder gradually
compresses information into a lower-dimensional
representation and decoder decodes this information
back to the original image dimension.
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4. https://arxiv.org/pdf/1505.04597.pdf



U-Net Model

* Originally proposed for medical image segmentation
to search for tumors in MRI images?>.

MRI SCAN

* The U-Net architecture follows an encoder-decoder
cascade structure, where the encoder gradually
compresses information into a lower-dimensional
representation and decoder decodes this information
back to the original image dimension.

MRI SCAN MASK

ingut

* The architecture gets an overall U-shape, which mage ol *1*]*| Segmentaton
map
leads to the name U-Net.
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4. https://arxiv.org/pdf/1505.04597.pdf



Training the Model

* The general work-flow followed for training is shown i
in the figure. .
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Training the Model

The general work-flow followed for training is shown i
in the figure.
The model is trained on 850 images. Biss throash
HADES Detector
geometry

The time taken for training 1s ~5h in CPU with specs
17 (12 cores,32GB RAM) for 40 epochs. = .

’v ‘ | Generate corresponding

. . 200 |Generate Rich Single| mask image (center of
The IOSS funCtlon used 1S 250 ’ Event Plots rings from Hough
. . . . Transf
BCEWithLogitsLoss and Adam optimiser. = =
| Pass tgrough
U-Net for
training

Apply on images| Final Parameter
250 to get model | » Estimation and
00 predictions Fitting
350 .




Model Predictions

* The prediction time of the model is ~ 0.04
sec (on CPU only) compared to ~ 0.17 sec
taken Hough Transform.




Model Predictions

* The prediction time of the model is ~ 0.04 ° — 0 el . Predicted Mask
sec (on CPU only) compared to ~0.17 sec * *
taken Hough Transform. - . o
- 0 0
* Different kind of masks (filled circles, 25 250 250
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Model Predictions

* A threshold (sigmoid function) on the model predictions
was also applied.
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coefficient.




Model Predictions

* A threshold (sigmoid function) on the model predictions
was also applied.

e The optimal threshold was found by using Dice
coefficient.

* Dice coefficient is given by

- 2lXnY]

DSC =
| X] + Y]

where | XNY] 1s the number of overlapping pixel
between the predicted mask X and the ground truth
mask Y,

| X| 1s the number of pixels in the predicted mask,

Y| 1s the number of pixels in the ground truth mask.
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Conclusion and Outlook

A preliminary U-Net architecture for ring detection has been developed.

Improve the U-Net model training by including all kinds of masks, by applying augmentation techniques (like
rotation,flipping, scaling, elastic transformations, etc) to make the model more robust to variations.

Also work on hyperparameter optimisation.
Implement the ring parameter extraction and ring fitting procedure.

Implement the timing information of the pixel hits to training and extend the architecture to learn track information as
well.

Apply the model to low mass dileptons and high density ring regions and measure its performance.

Export it to ONNX so it can be used for online implementation.
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Fig. 2. Bremsstrahlung and A-resonant contributions to Nw+’
final states for pion photoproduction (a) and pion scattering
(b). Only diagrams (a3) and (b3) are sensitive to the magnetic
dipole moments pa.
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Backup
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Fig. 18. Cross section ratio R at different ranges for beam energy w and total c.m. energy W, respectively. Black points
represent Crystal Ball / TAPS results, white squares are results from ref. [19]. Error bars denote statistical errors, grey shaded
bands show absolute systematic uncertainties. Black lines are theoretical predictions (using &+ = 2.6) of the unitary model
from ref. [33] (dashed line) and the yEFT calculation from ref. [35] (solid line).
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Backup

The unreduced (i.e. with reduction setto 'none’ ) loss can be described as:

lz,y) =L=A{l,...,Ix}", L=—-w,[y, logo(z,)+ (1 —y.)- log(l—o(z.))],

where IV is the batch size. If reduction is not 'none’ (default 'mean’),then

mean(L), ifreduction = ‘mean’;

lz,y) =
(@y) {sum(L). if reduction = ‘sum’.
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Backup

The architecture consists of a contracting path to capture
context and a symmetric expanding path that enables
precise localization.

s ins output
. . image (o ol il ol segr:nentation
The contracting path contains encoder layers that capture tile S EEERT

contextual information and reduce the spatial resolution of
the input, while the expansive path contains decoder layers
that decode the encoded data and use the information from
the contracting path via skip connections to generate a
segmentation map.

The network does not have any fully connected layers and
only uses the valid part of each convolution, i.e., the

segmentation map only contains the pixels, for which the METEC
o :.;i 512

full context is available in the input image. =» conv 3x3, RelLU

copy and crop

At the final layer a 1x1 convolution is used to map each 64 -]
component feature vector to the desired number of classes. X

4 max pool 2x2

4 up-conv 2x2
= conv 1x1
To allow a seamless tiling of the output segmentation map

(see Figure 2), it is important to select the input tile size such
that all 2x2 max-pooling operations are applied to a layer
with an even x- and y-size.

Fig. 1. U-net architecture (example for 32x32 pixels in the lowest resolution). Each blue
box corresponds to a multi-channel feature map. The number of channels is denoted
on top of the box. The x-y-size is provided at the lower left edge of the box. White

' . . boxes represent copied feature maps. The arrows denote the different operations.
The skip connections from the contracting path are used to

help the decoder layers locate and refine the features in the
image.
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Training Loss on Dataset

Backup

Training Loss on Dataset
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