

ML/AI for GSI-FAIR accelerators

Sabrina Appel, Martin Bajzek, Erika Kazantseva, Nico Madysa, Stephane Pietri, Helmut Weick (GSI), Christoph Reinwald, Daniel Kallendorf (TUDa) Darmstadt, October 2024

FAIR/GSI

EUROPENLABORATORIES FOR ACCELERATOR BASED SCIENCES FOR ESSINCE

Ring accelerator

Automation and optimization with Python:

- Multi-turn injection loss minimization (SIS18)
- Beam steering (TK)
- Closed-orbit correction for non-standard optics (SIS18)
- Slow extraction loss minimization (SIS18)
- Beam steering and focusing (FRS)

UNILAC SIS18 SIS100 Production of new atomic nuclei Production of antiprotons existing facility Experimental and storage rings planned facility 100 metres experiments

Ring accelerator

Methods of interests of automation:

- BOBYQA + Bayesian optimization (BO)
- Physics-information Bayesian optimization
- Multi-objective optimization with BO
- Data-driven model predictive control
- Reinforcement learning

- EURO-LABS finances a scientific staff member for three years (in APH)
- Several TUDa master and PhD students (with TUDa funding)
- One master student from Paris Lodron Universität Salzburg

Linear accelerator

GeOFF at GSI

GeOFF (Generic Optimization Frontend & Framework) is a widely used framework for deploying automation at CERN

- Python-based framework
- lists, configures and runs optimization problems
- standardized interfaces and adapters for various packages via Common Optimization Interfaces
- Optimization problems formulated as classes
- Class contains logic for live plotting, data logging, and communication with LSA, FESA and the Device Access system
- Quick adaptation of code and on-the-fly during shifts: This is made easy due to flexibility of the framework.

GeOFF Development/Distribution/Maintenance (N. Madysa, APH, EU funded)

Automation of Multi-Turn Injection

Using nine optimization parameters.

Multiturn Injection			
Bumper ramp down time	1	110	μs
Bumper amplitude	2	9610443115234	mm
Unilac Offset	_	100	μs
Chopper delay	3	50	μs
Chopper window		60.0	μs
Chopper correction angle		0.0	mrad
GTK7MU5 correction angle		0.0	mrad
GS12MU3I correction angle	4	-0.07552774331	mrad
I-Septum correction angle	5	-0.44575636275	mrad

- 150 iterations required, which took about 30 minutes.
- 1 iteration = median of 3 evaluations (to reduce variance)

+ 4 TK Steers

- gray area = initialization phase of algorithm.
- Loss could be reduced from 30 % to 12 %.

(correction of loss calculation to earlier publications)

- ✓ successful use of BOBYQA
- algorithm's internal model not reusable

ICAP

Automatization of FRS & Super-FRS: sub-goals

Why?

- Manual setup is too time consuming
- Increased complexity: different experiments will demand many different optical modes
- Scaling for same optics but different Brho not accurate enough

Preparation:

- FRS simulation model in COSY Infinity
- optimization and data analysis in Python

Observables:

Histograms from current grid detectors / phase space spectra from tracking detectors

Device—Interface:

- LSA (trim steerers + magnets),
- FESA (SIS18 monitoring),
- Experiment instrumentation (TPC via Go4 server, current grids) -> Team work of Martin + Nico and more

ICAP

Goals of optimization loops:

- 0th order: **center the beam** vertical steerers, main dipoles (Brho scaling for particular case matter calibration)
- 1st order: **set focus**, dispersion **quadrupoles**
- 2nd order: minimize aberrations sextupoles
- 3rd order: **minimize aberrations** octupoles (S-FRS only)
 - Classification (simulation with disabled sextupoles)

Daniel Kallendorf, Master's thesis

DBSCAN

K-Means

Optimization of separator optics with primary beam

Individual particle tracking detectors + charge states: -> Lots of information from x-x' spectra at dispersive focal plane

- **Central spot:**
 - x-Twiss parameters
 - Non-dispersive 1st order x-transfer matrix
- Charge states after target (outer spots):
 - Dispersive transfer matrix elements of 1st and 2nd order

Goal: Bring the spectra as close as possible to desired 1st order parameters

- Using charge states = more deduced optical ٠ properties
- Optimize direct observables instead of individual matrix elements

TPC Data analysis

FRS 1st order: tune quadrupoles

Proof of principle:

- **1. Steer beams** at the target
- 2. Tune quadrupoles to focus the beam (central spot upright)
- 3. **Tune sextupoles** to remove focal plane tilt and "banana"-deformation

Schematic illustration of FRS Dispersive Focus area

Next step:

 Use other observables to tune the entire 1st order optics (including dispersion) 12

Objective function

2

0

Outlook

- Towards more comprehensive accelerator models (with the most relevant parameters)
- Optimization of total SIS production cycles (performance on target)
- Control room integration of GeOFF GUI at GSI
- Working group for automated optimization of GSI machines is being formed right now (ask Sabrina for details)
- More advanced ML algorithms, adaptation to GSI
 - student-driven, examples:
 - physics-informed BO
 - data-driven Model Predictive Control
- **EURO-LABS**: generalization + maintenance
 - Prove portability of GeOFF through use at GANIL
 - continued collaboration with CERN on upgrades

Presented results

Multi-Turn-Injection into SIS18

- MTI has to respect Liouville's theorem: Injected beams only in free space
- Gain factor should be as high as possible to reach the space charge limit
- Injection loss should be as low as possible to avoid loss-induced vacuum degradation
- Competing goals: Maximize number of injection and minimize loss
- MTI model has been implemented in Xsuite¹ for fast tracking

- Especially important: Injected beam position and tune!
- Higher order dynamics for all parameters according to the ratio σ/μ*

¹https://xsuite.readthedocs.io/en/latest/

Bound Optimization BY Quadratic Approximation

- Developed by Michael J. D. Powell in 2009.
- sequential trust—region algorithm
- quadratic approximations of objective function ^[1]
- Updates to the model and trust radius on each iteration.
- Py-BOBYQA^[2]: adds global optimization and robustness against noise

[1] M. J. D Powell, technical report DAMTP 2009/NA06, Cambridge (2009),
[2] C. Cartis, arXiv:1804.00154, (2018), <u>https://pypi.org/project/Py-BOBYQA</u>

Trace of unconstrained optimization with trust-region method

Bayesian optimization

- Constructs probabilistic model of objective
- Gaussian process prior express assumption about objective function (mean function)
- Kernel function k(x, x') describes correlation in phase space
- Acquisition function use model to decide where to evaluate function next
- Choice of kernel and acquisition function essential
- Extension: Multi-objective Bayesian optimization (https://ax.dev/tutorials/multiobjective_optimization.html)

Gaussian Process and Utility Function After 9 Steps

BO - Different kernel functions

- Radial basis function kernel (RBF), with standard parameter

• and Matern kernel
$$C_{\nu}(d) = \sigma^2 \frac{2^{1-\nu}}{\Gamma(\nu)} \left(\sqrt{2\nu} \frac{d}{\rho}\right)^{\nu} K_{\nu}\left(\sqrt{2\nu} \frac{d}{\rho}\right),$$

f_{max} = Loss-free injection (ideal current)

> RBF: Smaller mean as Matern kernel, overall it is better

BO - Different acquisition functions

- Probability of improvement (PI): Sample points which are likely to be greater than best point so far (greedy)
- Expected improvement (EI): Sample points which are likely to have a high improvement
- Upper confidence bound* (UCB): UCB = $m(x) + \sqrt{\beta}\sigma(x)$ *N. Srinivas, arXiv:0912.3995v4, 2010

 $\beta_t = 4$ has a weaker performance compared to dynamic beta $\beta_t = 0.4 * \ln(t^{\frac{d}{2}+2} * \frac{\pi^2}{3 * \delta})$

- Hedging (portfolio of acqf) -> Switch acqf: Rotation of UCB -> EI -> PI in this order

Multi-objective optimization with BO

- Competing: Maximize number of injection and minimize loss
- Pareto front: Find set of optimal solutions instead of single one
- Simulation with Genetic algorithms has been performed a while ago

Measurements

FRS (FRagment Separator) and Super-FRS

- Production and investigation of nuclear structure of exotic nuclei
- Exotic nuclei can be produced, separated, identified and eventually stored in a storage ring
- "Super-FRS: higher acceptance, more complex (4×more magnets), gain factors between 1000 (¹²C) and 7500 (¹³²Sn)¹.
- Automation of operational tasks essential

Super-FRS layout:

¹H. Simon et al., EMIS XVIII workshop, 2018.

SIS18 (SchwerlonenSynchrotron)

- Booster for FAIR SIS100 synchrotron
- Offers fast and slow extraction to experiments and subsequent accelerators.
- Main bottleneck for intense FAIR beams: multi-turn injection into SIS18
- Main limiting effect: (incoherent) transverse space charge force
- Also important limiting effect: loss-induced vacuum degradation for intermediate charge state ions

