The Nature of QCD Phase Transitions From cumulants to the Metropolis Algorithm

Anar Rustamov

Phase diagram of QCD matter

P. Braun-Munzinger, A.R., J. Stachel, 50 years of QCD, EPJ C 83 (2023) 1125 FO: A. Andronic, P. Braun-Munzinger, K. Redlich and J. Stachel, Nature 561, 321–330 (2018) IQCD: A. Bazavov et al., (HotQCD), PLB 795 (2019) 15-21

A. Rustamov, Never at Rest: A Lifetime Inquiry of QGP, 9-12 February, 2025, Physikzentrum Bad Honnef

 $T_{fo}^{ALICE} = 156.5 \pm 1.5 \pm 3 \text{ MeV(sys)}$ $\mu_R \approx 0$, $V \approx 5280 \text{ fm}^3$ (in one unit of rapidity) $V_{Ph} \approx 1200 \text{ fm}^3$ $T_{C}^{LQCD} = 156.5 \pm 1.5 \text{ MeV}$

for a thermal system of fixed volume V and temperature T

experiment

Probing EoS with event-by-event fluctuations

- $o r^{th}$ order cent

 $\frac{\kappa_n(N_B - N_{\bar{B}})}{VT^3} \equiv \frac{1}{VT^3} \frac{\partial^n \ln Z(V, T, \mu_B)}{\partial (\mu_B/T)^n} = \frac{\partial^n P/T^4}{\partial (\mu_B/T)^n} \equiv \hat{\chi}_n^B$ experiment theory

o "volume" fluctuates

o exact conservations

o measures **net-protons**

A. Rustamov, Antrittsvorlesung, 22.01.2025, Goethe University Frankfurt

• $\Delta N = N_R - N_{\bar{R}}$ occurs with probability $p(\Delta N)$ (measured)

ral moment:
$$\mu_r = \sum_{\Delta N} (\Delta N - \langle \Delta N \rangle)^r p(\Delta N)$$

° first 4 cumulants: $\kappa_1 = \langle \Delta N \rangle$, $\kappa_2 = \mu_2$, $\kappa_3 = \mu_3$, $\kappa_4 = \mu_4 - 3\mu_2^2$

o volume is fixed o conservations on average o predicts for **net-baryons**

Experimental challenges

- Volume fluctuations
- Conservation laws
- First ALICE results

A. Rustamov, Never at Rest: A Lifetime Inquiry of QGP, 9-12 February, 2025, Physikzentrum Bad Honnef

Experiment vs. Theory

- Canonical Thermodynamics
- Comparison to STAR results
- Metropolis algorithm
- Comparison to ALICE results
- Outlook

Experimental challenges

• Volume fluctuations

- Conservation laws
- First ALICE results

A. Rustamov, Never at Rest: A Lifetime Inquiry of QGP, 9-12 February, 2025, Physikzentrum Bad Honnef

Experiment vs. Theory

- Canonical Thermodynamics
- Comparison to STAR results
- Metropolis algorithm
- Comparison to ALICE results
- o Outlook

Bridging experiment with theory

Bridging the gap between event-by-event fluctuation measurements and theory predictions in relativistic nuclear collisions, P. Braun-Munzinger, A. Rustamov, J. Stachel, Nucl. Phys. A 960 (2017) 114-130.

V. Skokov, B. Friman, and K. Redlich, Phys.Rev. C88 (2013) 034911

A. Rustamov, Never at Rest: A Lifetime Inquiry of QGP, 9-12 February, 2025, Physikzentrum Bad Honnef

<u>Wounded nucleons</u>, N_W : Nucleons which collided at least once <u>inelastically</u>

Contributions from wounded nucleon fluctuations

ALICE Phys.Rev. C88 (2013) no.4, 044909

A. Rustamov, Never at Rest: A Lifetime Inquiry of QGP, 9-12 February, 2025, Physikzentrum Bad Honnef

model of independent sources

Volume fluctuations

A. Rustamov, Never at Rest: A Lifetime Inquiry of QGP, 9-12 February, 2025, Physikzentrum Bad Honnef

$$\kappa_{2}(N-\bar{N}) = \kappa_{2}(n-\bar{n})\langle N_{W}\rangle + \langle N-\bar{N}\rangle^{2} \frac{\kappa_{2}(N_{W})}{\langle N_{W}\rangle^{2}}$$
vanishes for ALICE
$$4(\Delta N) = \langle N_{W}\rangle \kappa_{4}(\Delta n) + 4 \langle \Delta n\rangle \kappa_{3}(\Delta n)\kappa_{2}(N_{W})$$

$$- 3\kappa_{2}^{2}(\Delta n)\kappa_{2}(N_{W}) + 6 \langle \Delta n\rangle^{2} \kappa_{2}(\Delta n)\kappa_{3}(N_{W}) + \langle \Delta n\rangle^{4} \kappa_{4}(N_{W})$$
may be negative
$$(2017) 114.130$$

$$(2017) 114.130$$

$$(317) + (317) +$$

Experimental challenges

- Volume fluctuations
- Conservation laws
- First ALICE results

A. Rustamov, Never at Rest: A Lifetime Inquiry of QGP, 9-12 February, 2025, Physikzentrum Bad Honnef

Experiment vs. Theory

- Canonical Thermodynamics
- Comparison to STAR results
- Metropolis algorithm
- Comparison to ALICE results
- o Outlook

Ideal Gas in GCE

A. Rustamov, Never at Rest: A Lifetime Inquiry of QGP, 9-12 February, 2025, Physikzentrum Bad Honnef

$$\frac{\kappa_n(N_B - N_{\bar{B}})}{VT^3} = \frac{1}{VT^3} \frac{\partial^n \ln Z(V, T, \mu_B)}{\partial (\mu_B / T)^n} \equiv \hat{\chi}_n^B$$

Ideal Gas in Grand Canonical Ensemble

$$\kappa_n(N) = \langle N \rangle$$
 (Poisson distribution)

$$\kappa_n(N-\bar{N}) = \langle N \rangle + (-1)^n \langle \bar{N} \rangle$$
 (Skellam distribution)

ample:
$$\frac{\kappa_2(N-\bar{N})}{\langle N+\bar{N}\rangle} = \frac{\langle N+\bar{N}\rangle}{\langle N+\bar{N}\rangle} = 1$$

Ideal Gas in GCE

A. Rustamov, Never at Rest: A Lifetime Inquiry of QGP, 9-12 February, 2025, Physikzentrum Bad Honnef

$$\frac{N_B - N_{\bar{B}}}{VT^3} = \frac{1}{VT^3} \frac{\partial^n \ln Z(V, T, \mu_B)}{\partial \left(\mu_B / T\right)^n} \equiv \hat{\chi}_n^B$$

Ideal Gas in Grand Canonical Ensemble

) =
$$\langle N \rangle$$
 (Poisson distribution)

$$(-\bar{N}) = \langle N \rangle + (-1)^n \langle \bar{N} \rangle$$
 (Skellam distribution)

cample:
$$\frac{\kappa_2(N-\bar{N})}{\langle N+\bar{N}\rangle} = \frac{\langle N+\bar{N}\rangle}{\langle N+\bar{N}\rangle} = 1$$

Ideal Gas in GCE + conservation laws

P. Braun-Munzing

Exact conservati

A. Rustamov, Never at Rest: A Lifetime Inquiry of QGP, 9-12 February, 2025, Physikzentrum Bad Honnef

$$\frac{N_{\bar{B}}}{N_{\bar{B}}} = \alpha \left[\frac{\kappa_2 (N_B - N_{\bar{B}})}{\langle N_B + N_{\bar{B}} \rangle} + 1 - \alpha \right] + 1 - \alpha$$
er, A.R., J. Stachel, NPA 960 (2017) 114-130

If baryon number is conserved in full phase space

$$\frac{-N_{\bar{B}}}{+N_{\bar{B}}\rangle} = 1 - \alpha$$

$$\frac{\kappa_2(N_B - N_{\bar{B}})}{\langle N_B + N_{\bar{B}}\rangle} = 1$$
on
$$\frac{\kappa_2(N_B - N_{\bar{B}})}{\langle N_B + N_{\bar{B}}\rangle} = 1 - \alpha$$

$$\frac{\kappa_2(N_B - N_{\bar{B}})}{\langle N_B + N_{\bar{B}} \rangle} = 0$$

Ideal Gas in GCE + conservation laws

Exact conservati

A. Rustamov, Never at Rest: A Lifetime Inquiry of QGP, 9-12 February, 2025, Physikzentrum Bad Honnef

$$\frac{N_{\bar{B}})}{N_{\bar{B}}\rangle} = \alpha \left[\frac{\kappa_2 (N_B - N_{\bar{B}})}{\langle N_B + N_{\bar{B}} \rangle} + 1 - \alpha \right] + 1 - \alpha$$

$$M_B = \alpha \left[\frac{\kappa_2 (N_B - N_{\bar{B}})}{\langle N_B + N_{\bar{B}} \rangle} + 1 - \alpha \right]$$

$$M_B = \alpha \left[\frac{\kappa_2 (N_B - N_{\bar{B}})}{\langle N_B + N_{\bar{B}} \rangle} + 1 - \alpha \right]$$

$$M_B = \alpha \left[\frac{\kappa_2 (N_B - N_{\bar{B}})}{\langle N_B + N_{\bar{B}} \rangle} + 1 - \alpha \right]$$

$$M_B = \alpha \left[\frac{\kappa_2 (N_B - N_{\bar{B}})}{\langle N_B + N_{\bar{B}} \rangle} + 1 - \alpha \right]$$

P. Braun-Munzinger, A.R., J. Stachel, NPA 960 (2017) 114-130

If baryon number is conserved in full phase space

$$\frac{-N_{\bar{B}}}{+N_{\bar{B}}\rangle} = 1 - \alpha$$

$$\frac{\kappa_2(N_B - N_{\bar{B}})}{\langle N_B + N_{\bar{B}}\rangle} = 1$$
on
$$\frac{\kappa_2(N_B - N_{\bar{B}})}{\langle N_B + N_{\bar{B}}\rangle} = 1 - \alpha$$

$$\frac{\kappa_2(N_B - N_{\bar{B}})}{\langle N_B + N_{\bar{B}} \rangle} = 0$$

First Alice results (Identity Method)

A. R., Nucl.Phys.A 967 (2017) 453-456 (QM 17) ALICE: Phys. Lett. B 807 (2020) 135564, Phys. Lett. B (2022) 137545

A. Rustamov, Never at Rest: A Lifetime Inquiry of QGP, 9-12 February, 2025, Physikzentrum Bad Honnef

A. Bazavov et al [HotQCD], PRD 101 (2020) 074502 A. Bazavov et al., Phys.Rev. D85 (2012) 054503

first verification of LQCD results

Consequences:

- Support for the validity of the HRG model
- Further support for freeze-out at the phase boundary

Identity Method A.R., M. I. Gorenstein, PRC 86, 044906 (2012) M. Arslandok, A.R., NIM A946, 162622 (2019) A. R., Phys.Rev.C 110 (2024) 6, 064910

First ALICE results (Identity Method)

A. Rustamov, Never at Rest: A Lifetime Inquiry of QGP, 9-12 February, 2025, Physikzentrum Bad Honnef

$$\kappa_2(N-\bar{N}) = \kappa_2(n-\bar{n})\langle N_W \rangle + \langle N-\bar{N} \rangle^2 \frac{\kappa_2(N_W)}{\langle N_W \rangle^2}$$

P. Braun-Munzinger, A. R., J. Stachel, NPA 960 (2017) 114-130

A. R., Nucl.Phys.A 967 (2017) 453-456 (QM 17) ALICE: Phys. Lett. B 807 (2020) 135564, Phys. Lett. B (2022) 137545

Experimental verification:

$$R_1 = \kappa_2 (p - \bar{p}) / \langle n_p + n_{\bar{p}} \rangle$$

o not influenced by volume fluctuations

 $R_2 = \kappa_2(p) / \langle n_p \rangle$

o affected by volume fluctuations

Experimental challenges

- Volume fluctuations
- Conservation laws
- First ALICE results

A. Rustamov, Never at Rest: A Lifetime Inquiry of QGP, 9-12 February, 2025, Physikzentrum Bad Honnef

Experiment vs. Theory

- Canonical Thermodynamics
- Comparison to STAR results
- Metropolis algorithm
- Comparison to ALICE results
- o Outlook

P. Braun-Munzinger, A.R., J. Stachel, NPA 982 (2019) 307-310 (QM 18) P. Braun-Munzinger, A.R., J. Stachel, e-Print: 1907.03032 [nucl-th] (2019) A. R., NPA 1005 (2021) 121858(QM 19)

Ideal gas EoS plus global baryon number conservation

 $\langle N_B \rangle$, $\langle N_{\bar{B}} \rangle$ - in 4π $\langle n_B \rangle$, $\langle n_{\bar{B}} \rangle$ - inside acceptance $\alpha_B = \langle n_B \rangle / \langle N_B \rangle$ - acceptance for B $\alpha_{\bar{B}} = \langle n_{\bar{B}} \rangle / \langle N_{\bar{B}} \rangle$ - acceptance for \bar{B} z - single baryon partition function

in general: $\alpha_{R} \neq \alpha_{\bar{R}}$

P. Braun-Munzinger, B. Friman, K. Redlich, A.R., J. Stachel, NPA 1008 (2021) 122141

A. Rustamov, Never at Rest: A Lifetime Inquiry of QGP, 9-12 February, 2025, Physikzentrum Bad Honnef

- exploiting Canonical Ensemble in the full phase space
 - \Im no fluctuations in 4π (like in experiments)

Experimental acceptance

A. Rustamov, Never at Rest: A Lifetime Inquiry of QGP, 9-12 February, 2025, Physikzentrum Bad Honnef

The strategy

Comparison to baseline

P. Braun-Munzinger, B. Friman, K. Redlich, A.R., J. Stachel, NPA 1008 (2021) 122141

Baseline Calculator

A. Rustamov, B. Friman https://github.com/e-by-e/Cumulants-CE.git

A. Rustamov, Never at Rest: A Lifetime Inquiry of QGP, 9-12 February, 2025, Physikzentrum Bad Honnef

within acceptance ___^{m[⊲]} 40⊨ $\bigstar \left(\langle N_B \rangle_A, \langle N_{\bar{B}} \rangle_A \right)$ 30 20 10 0<u>⊩</u> 0

20

40

N_B

Results from STAR vs. canonical baseline

the first quantitative and most precise canonical baselines

A. Rustamov, Never at Rest: A Lifetime Inquiry of QGP, 9-12 February, 2025, Physikzentrum Bad Honnef

remarkable agreement between canonical baseline and STAR BESI data

- significant reduction of canonical baseline for κ_6/κ_2 going from positive values at LHC to negative values at lower energies
- STAR DATA for κ_6/κ_2 is not consistent with the LQCD predictions

STAR: PRL 126 (2021) 9, 092301, PRL 130 (2023) 8, 082301 P. Braun-Munzinger, B. Friman, K. Redlich, A.R., J. Stachel, NPA 1008 (2021) 122141

Energy excitation function of κ_4/κ_2 in central Au-Au collisions

HADES: Phys.Rev.C 102 (2020) 2, 024914 STAR: Phys.Rev.Lett. 126 (2021) 9, 092301

A. Rustamov, Never at Rest: A Lifetime Inquiry of QGP, 9-12 February, 2025, Physikzentrum Bad Honnef

a dip in the excitation function is generic

M. Stephanov, PRL102.032301(2009), PRL107.052301(2011) M.Cheng et al, PRD79.074505(2009)

STAR: Phys.Rev.Lett. 126 (2021) 9, 092301

"non-monotonic behavior with a significance of 3.1σ relative to GCE expectation"

Energy excitation function of κ_4/κ_2 in central Au-Au collisions

HADES: Phys.Rev.C 102 (2020) 2, 024914 STAR: Phys.Rev.Lett. 126 (2021) 9, 092301

A. Rustamov, Never at Rest: A Lifetime Inquiry of QGP, 9-12 February, 2025, Physikzentrum Bad Honnef

a dip in the excitation function is generic

M. Stephanov, PRL102.032301(2009), PRL107.052301(2011) M.Cheng et al, PRD79.074505(2009)

STAR: Phys.Rev.Lett. 126 (2021) 9, 092301

"non-monotonic behavior with a significance of 3.1σ relative to GCE expectation"

CE Baseline: P. Braun-Munzinger, B. Friman, K. Redlich, A.R., J. Stachel, NPA 1008 (2021) 122141

no statistically significant difference between the data and the canonical baseline (KS test: 1.2σ , χ^2 test: 1.5σ)

STAR BES I vs. BES II DATA, κ_4/κ_2

P. Braun-Munzinger, A. R., N. Xu, Annual Review of Nuclear and Particle Science (under preparation)

A. Rustamov, Never at Rest: A Lifetime Inquiry of QGP, 9-12 February, 2025, Physikzentrum Bad Honnef

NEW STAR data points are digitized from the pdf plot!

A. Pandav, CPOD 2024 Note: We prefer to plot C_1/C_2 Notation: $C_i \rightarrow \kappa_i$

The NEW data show significantly reduced uncertainties

CE Baseline: P. Braun-Munzinger, B. Friman, K. Redlich, A.R., J. Stachel, NPA 1008 (2021) 122141

Experimental challenges

- Volume fluctuations
- Conservation laws
- First ALICE results

A. Rustamov, Never at Rest: A Lifetime Inquiry of QGP, 9-12 February, 2025, Physikzentrum Bad Honnef

Experiment vs. Theory

- Canonical Thermodynamics
- Comparison to STAR results
- Metropolis algorithm
- Comparison to ALICE results
- Outlook

Ideal gas EoS plus local conservation laws

A. Rustamov, Never at Rest: A Lifetime Inquiry of QGP, 9-12 February, 2025, Physikzentrum Bad Honnef

- exploiting Canonical Ensemble in the full phasespac
- ^o no fluctuations in 4π (like in experiments)
 - correlations in rapidity space (local conservations)

Metropolis algorithm (Simulated annealing)

works for arbitrary rapidity distributions

A. Rustamov, Never at Rest: A Lifetime Inquiry of QGP, 9-12 February, 2025, Physikzentrum Bad Honnef

$$\rho_{n} = \frac{cov[y_{B}, P_{n}(y_{\bar{B}})]}{\sigma_{y_{B}}\sigma_{y_{\bar{B}}}}$$
$$\Delta = |\rho_{n} - \rho| - |\rho_{n-1} - \rho|$$
$$\rho: \text{ desired corr. coefficient}$$

A. R., P. Braun-Munzinger, J. Stachel, QM 2022 P. Braun-Munzinger, K. Redlich, A. R., J. Stachel, JHEP 08 (2024) 113

Details of implementation

$$Z_{B}(V,T) = \sum_{N_{B}=0}^{\infty} \sum_{N_{\bar{B}}=0}^{\infty} \frac{(\lambda_{B} z_{B})^{N_{B}}}{N_{B}!} \frac{(\lambda_{\bar{B}} z_{\bar{B}})^{N_{\bar{B}}}}{N_{\bar{B}}!} \delta(N_{B} - N_{\bar{B}} - B) = \left(\frac{\lambda_{B} z_{B}}{\lambda_{\bar{B}} z_{\bar{B}}}\right)^{\frac{B}{2}} I_{B}(2 z \sqrt{\lambda_{B} \lambda_{\bar{B}}})$$

B net baryon number, conserved in each event modified Bessel function of the first kind I_R single particle partition functions for baryons, anti baryons $Z_{R}, Z_{\bar{R}}$ auxiliary parameters for calculating cumulants of baryons, anti baryons $\lambda_R, \lambda_{\bar{R}}$

baryon number conservation (CE partition function)

Input from experiments

baryon rapidity distributions $\stackrel{\scriptstyle >}{\scriptstyle >}$ measured (canonical) $\langle N_{R} \rangle$, $\langle N_{\bar{R}} \rangle$

A. Rustamov, Never at Rest: A Lifetime Inquiry of QGP, 9-12 February, 2025, Physikzentrum Bad Honnef

+

- A. R., P. Braun-Munzinger, J. Stachel, QM 2022 P. Braun-Munzinger, K. Redlich, A. R., J. Stachel, JHEP 08 (2024) 113

ALICE Results (Identity Method)

P. Braun-Munzinger, B. Friman, K. Redlich, A.R., J. Stachel, NPA 1008 (2021) 122141 P. Braun-Munzinger, K. Redlich, A.R., J. Stachel, JHEP 08 (2024) 113

• Alice data: best description with $\rho = 0.1$ ($\Delta y_{corr} = 12$) \leftrightarrow **Global baryon number conservation**

Agreement with LQCD predictions

Calls into question baryon production mechanism in Hjing (Lund String Fragmentation) 0

A. Rustamov, Never at Rest: A Lifetime Inquiry of QGP, 9-12 February, 2025, Physikzentrum Bad Honnef

ALICE: Phys. Lett. B 807 (2020) 135564, Phys. Lett. B (2022) 137545

Near future, CBM

A. Rustamov, Never at Rest: A Lifetime Inquiry of QGP, 9-12 February, 2025, Physikzentrum Bad Honnef

- Systematic measurements of fluctuations stemming from critical point
- Measuring fluctuations induced by spinodal 0 decomposition
- Search for cluster formation
- P. Braun-Munzinger, K. Redlich, A. R., J. Stachel, JHEP 08 (2024) 113
- C. Sasaki, B. Friman, K. Redlich, Phys.Rev.D 77 (2008) 034024

Near future, ALICE3

A. Rustamov, Never at Rest: A Lifetime Inquiry of QGP, 9-12 February, 2025, Physikzentrum Bad Honnef

e-Print: 2211.02491 [physics.ins-det]

Acceptance coverages

• ALICE 1-2: $0.6 GeV/c, <math>|\eta| < 0.8$ • ALICE 3: $0.3 GeV/c, <math>|\eta| < 4$

Opens new avenues, such as study of charm fluctuations

May your journey, both in physics and in life, be filled with breakthrough moments, smooth trajectories, and just the right amount of **fluctuations** to keep things interesting.

A. Rustamov, Never at Rest: A Lifetime Inquiry of QGP, 9-12 February, 2025, Physikzentrum Bad Honnef

Happy Birthday, Dear Johanna!

A. Rustamov, Never at Rest: A Lifetime Inquiry of QGP, 9-12 February, 2025, Physikzentrum Bad Honnef

