Soft photon measurements with ALCE3

Never at Rest: A Lifetime Inquiry of QGP

Martin Völkl

VERSI BIRMINGHAM

Infrared divergences

QED corrections to processes let the cross section diver

• Vertex correction $\sigma(p \to p')_{\text{corr}} \approx \sigma(p \to p') \cdot \left(1 - \frac{\alpha}{\pi} \log \frac{-q^2}{\mu^2}\right)$

- Soft photon emission $\sigma(p \to p' + \gamma(k)) \sim \sigma(p \to p') \cdot \frac{\alpha}{\pi} \log \frac{1}{2}$
- Interpretation: Cannot be experimentally distinguished for very low photon
- Sum of effects is finite
- Add up higher orders of corrections divergencies still cancel (Bloch-Nordsiek theorem)
- Can we measure these photons?

$$\frac{q^2}{2} \log \frac{-q^2}{m^2} \right)$$
$$\frac{-q^2}{\mu^2} \log \frac{-q^2}{m^2}$$

Soft photon emission

Low's theorem

- For interactions with charged particles: corresponding process producing photons
- Only external lines contribute in soft limit

• Extra propagator
$$\frac{1}{(p+k)^2 - m^2} = \frac{1}{2pk}$$

- No change in momenta → blob stays the same → soft photon production in relation to hadronic cross section even without calculating the process
- Soft photon production/inner bremsstrahlung/hadronic bremsstrahlung
- Based on very fundamental principles; few uncertainties
- Soft theorems connected to fundamental conservation theorems (charge conservation)

Low's theorem

- ●
- photon production (with 4-momentum \mathbf{K}): ullet $\frac{\mathrm{d}N^{\gamma}}{\mathrm{d}^{3}k} = \frac{\alpha}{(2\pi)^{2}} \frac{-1}{E_{\gamma}} \int \left(\mathrm{d}^{3}p_{1}...\mathrm{d}^{3}p_{N}\right) \left(\sum_{\text{Portiological prime}} \frac{\eta_{i}e_{i}\mathbf{P_{i}}}{\mathbf{P_{i}K}}\right)^{2} \frac{\mathrm{d}N^{\mathrm{H}}}{\mathrm{d}^{3}p_{1}...\mathrm{d}^{3}p_{N}}$
- For a single event: $\frac{d^{3}N}{d |k| d\eta d\phi} = -\frac{\alpha}{(2\pi)^{2}} \cos(\vartheta/2) \sin(\vartheta/2) E_{\gamma} \sin \vartheta \left(\sum_{\text{Particle } i} \frac{\eta_{i} e_{i} \mathbf{P}_{i}}{\mathbf{P}_{i} \mathbf{K}}\right)^{2} \sqrt{\frac{1}{E_{\gamma}}}$

1 pos, 1 neg charged particle plus arbitrary neutral

Low's Theorem connects interaction of charged particles with 4-momenta P_i with expectation value for soft

Experimentalists seem to call this Low's theorem. Theorists use the name for the next order corrections

2 pos, 2 neg charged particles plus arbitrary neutral

Estimating the soft photon signal

- Signal can be estimated from initial and produced charged particles
- Depends on $\beta\gamma$, difficulties without PID and with inefficiencies
- In previous experiments: estimated using event generators
- Signal turns out to be approximately constant per pseudorapidity for fixed E_{γ} and $p_{T,\gamma}$

Previous measurements of excess production

- Several measurements of soft photon production were performed • previously
- Expected signal usually calculated from event generators
- Typically an enhancement of a factor~ 5 over the expected signal
- Typically $E_{\gamma} > 0.2 \text{ GeV}$

DELPHI, Eur. Phys. J. C (2010) 67: 343–366

The soft photon puzzle

- Experiments with different setups
- Somewhat different analysis strategies
- Very simple signal estimate based on very fundamental principles...
- ... which is nevertheless off by a factor~5
- Also at LHC energies? And if so: why?

(from Klaus Reygers' talk at the ALICE 3 workshop)

Experiment	Year	Collision energy	Photon <i>p</i> ₇	Photon / Brems Ratio	Detection method	Refer (click to go
π⁺р	1979	10.5 GeV	<i>рт</i> < 30 МеV/ <i>с</i>	1.25 ± 0.25	bubble chamber	<u>Goshaw et al</u> <u>Phys. Rev. Lett.</u>
K⁺p WA27, CERN	1984	70 GeV	<i>рт</i> < 60 МеV/с	4.0 ± 0.8	bubble chamber (BEBC)	<u>Chliapnikov et a</u> Phys. Lett. B 14
π⁺p ERN, EHS, NA22	1991	250 GeV	<i>рт</i> < 40 МеV/с	6.4 ± 1.6	bubble chamber (RCBC)	Botterweck et a Z. Phys. C 51, 54
K⁺p RN, EHS, NA22	1991	250 GeV	<i>р</i> ₇ < 40 MeV/ <i>с</i>	6.9 ± 1.3	bubble chamber (RCBC)	Botterweck et a Z. Phys. C 51, 54
π⁻p, N, WA83, OMEGA	1993	280 GeV	<i>p</i> _T < 10 MeV/ <i>c</i> (0.2 < <i>E</i> _Y < 1 GeV)	7.9 ± 1.4	calorimeter	<u>Banerjee et al.,</u> Phys. Lett. B 30
р-Ве	1993	450 GeV	<i>р</i> ₇ < 20 MeV/ <i>с</i>	< 2	pair conversion, calorimeter	<u>Antos et al.,</u> <u>Z. Phys. C 59, 5</u> 4
p-Be, p-W	1996	18 GeV	<i>рт</i> < 50 МеV/с	< 2.65	calorimeter	<u>Lissauer et al.,</u> Phys.Rev. C54 (
π⁻p, N, WA91, OMEGA	1997	280 GeV	<i>p</i> _T < 20 MeV/ <i>c</i> (0.2 < <i>E_γ</i> < 1 GeV)	7.8 ± 1.5	pair conversion	<u>Belogianni et al</u> Phys. Lett. B 40
π⁻p, N, WA91, OMEGA	2002	280 GeV	<i>p</i> _T < 20 MeV/ <i>c</i> (0.2 < <i>E</i> _γ < 1 GeV)	5.3 ± 1.0	pair conversion	<u>Belogianni et al</u> Phys. Lett. B 54
рр, N, WA102, OMEGA	2002	450 GeV	<i>p</i> _T < 20 MeV/ <i>c</i> (0.2 < <i>E</i> _γ < 1 GeV)	4.1 ± 0.8	pair conversion	<u>Belogianni et al</u> Phys. Lett. B 54
e⁺e⁻ → 2 jets CERN, DELPHI	2006	91 GeV (CM)	<i>p</i> _T < 80 MeV/ <i>c</i> (0.2 < <i>E_γ</i> < 1 GeV)	4.0 ± 0.3 ± 1.0	pair conversion	DELPHI, Eur. Phys. J. C 4
e⁺e⁻ → μ⁺μ⁻ CERN, DELPHI	2008	91 GeV (CM)	<i>рт</i> < 80 МеV/с	~1	pair conversion	DELPHI, Eur. Phys. J. C5

Ω LAYOUT FOR WA91 (1992 RUN)

What is a soft photon anyways?

- Extra propagator $\frac{1}{p^2 m^2}$, with the photon $\frac{1}{(p+k)^2 m^2}$
- Divergence depending on how virtual the propagator is compared to photon energy
- Internal lines contribute if they are sufficiently close to onshell
- Theorists: Calculate next order
- Experimentalists: softest we can measure

Early discussions

- Virtual meetings during the pandemic

• What does the QGP collision look like to the eye? Can we put a telescope into the beam pipe?

Early discussions (2)

- X-ray optics?
- Can we reconstruct the photons after Compton scattering?
- Likely too many backgrounds that are hard to estimate

Photons at the MeV scale

- Substantial contribution from π^0 decays
- Boosted in forward direction better signal/ background
- Plan for a photon detector in the forward direction

The Forward Conversion Tracker

- Several layers of silicon tracker
- Measures photons via e^+e^- -pairs from converter
- Energy from track bending in dipole field
- Tests with Geant4 suggest measurements from a few 10 MeV possible

Magnetic field discussions

Are these photons soft?

- Low: $E_{\gamma}/E \ll 1$ but for $2 \rightarrow 2$ scattering
- For theorists classically limit more important than region of applicability
- D. Bonocore: $E_{\gamma} \ll m^2/Q$ receives no corrections at loop level - would mean $E_{\gamma} \ll 0.1 \,\text{MeV}$ for $e^+e^- \rightarrow \mu^+\mu^-$ but was measured at 200.

Sov.J.Nucl.Phys. 5 (1967) 280

- Gribov (considering $2 \rightarrow 2$ processes) gives $k_T \ll m$ (RRTF paper: necessary but not sufficient condition) Phys.Rept. 1097 (2024) 1-40
- pp collisions give particle production in the forward direction as boosted version of particle production at midrapidity - does this mean that soft photons at mid rapidity are harder in the forward case?

Full calculation compared to Low

- Lebiedowicz, Nachtmann, and Szczurek found that here E_{γ} is the relevant expansion parameter
- Angles are relative to incoming pion axis

How does this relate to non-diffractive processes?

Soft photon production and hadronisation

- The purely EM process does not show a photon excess
- Photons are produced by accelerated charges
- What if there are additional processes that accelerate charges?
- What if there are processes that take some time and cause decoherence between the contributions?
- Might be connected to hadronisation

Experiment	Year	Collision energy	Photon <i>p</i> _T	Photon / Brems Ratio	Detection method	Reference (click to go to
π⁺p	1979	10.5 GeV	<i>р</i> < 30 MeV/ <i>с</i>	1.25 ± 0.25	bubble chamber	<u>Goshaw et al.,</u> Phys. Rev. Lett. 43,
K⁺p WA27, CERN	1984	70 GeV	<i>рт</i> < 60 MeV/ <i>с</i>	4.0 ± 0.8	bubble chamber (BEBC)	<u>Chliapnikov et al.,</u> Phys. Lett. B 141, 27
π⁺p CERN, EHS, NA22	1991	250 GeV	<i>р</i> < 40 MeV/ <i>с</i>	6.4 ± 1.6	bubble chamber (RCBC)	<u>Botterweck et al.,</u> Z. Phys. C 51, 541 (1
K⁺p CERN, EHS, NA22	1991	250 GeV	<i>р</i> < 40 MeV/ <i>с</i>	6.9 ± 1.3	bubble chamber (RCBC)	<u>Botterweck et al.,</u> <u>Z. Phys. C 51, 541 (1</u>
π⁻p, CERN, WA83, OMEGA	1993	280 GeV	<i>p</i> _T < 10 MeV/ <i>c</i> (0.2 < <i>E</i> _γ < 1 GeV)	7.9 ± 1.4	calorimeter	<u>Banerjee et al</u> Phys. Lett. B 305, 18
р-Ве	1993	450 GeV	<i>p</i> ⊤ < 20 MeV/ <i>c</i>	< 2	pair conversion, calorimeter	<u>Antos et al.,</u> <u>Z. Phys. C 59, 547 (1</u>
p-Be, p-W	1996	18 GeV	<i>p</i> ₇ < 50 MeV/ <i>c</i>	< 2.65	calorimeter	<u>Lissauer et al</u> Phys.Rev. C54 (1996
π⁻p, CERN, WA91, OMEGA	1997	280 GeV	<i>p</i> _T < 20 MeV/ <i>c</i> (0.2 < <i>E</i> _Y < 1 GeV)	7.8 ± 1.5	pair conversion	<u>Belogianni et al.,</u> Phys. Lett. B 408, 48
π⁻p, CERN, WA91, OMEGA	2002	280 GeV	<i>p</i> _T < 20 MeV/ <i>c</i> (0.2 < <i>E</i> _γ < 1 GeV)	5.3 ± 1.0	pair conversion	<u>Belogianni et al</u> Phys. Lett. B 548, 12
pp, CERN, WA102, OMEGA	2002	450 GeV	<i>p</i> _T < 20 MeV/ <i>c</i> (0.2 < <i>E</i> _γ < 1 GeV)	4.1 ± 0.8	pair conversion	<u>Belogianni et al</u> Phys. Lett. B 548, 12
e⁺e⁻ → 2 jets CERN, DELPHI	2006	91 GeV (CM)	<i>p</i> _T < 80 MeV/ <i>c</i> (0.2 < <i>E</i> _Y < 1 GeV)	4.0 ± 0.3 ± 1.0	pair conversion	DELPHI, Eur. Phys. J. C 47, 2
e⁺e⁻ → μ⁺μ⁻ CERN, DELPHI	2008	91 GeV (CM)	<i>p</i> ⊤ < 80 MeV/ <i>c</i>	~ 1	pair conversion	DELPHI, Eur. Phys. J. C57, 49

Hadronisation and soft photons

Emission via rotating charged strings in the Lund model

wtac1 (=) Lee Scale of Consider Unstable JNr.E Hadwastin Decay log scale

- If a hadron is produced via a resonance, is this one • process or two?
- Does the answer depend on the soft photon energy

- Decay photons independent of material
- of material budget

The challenges ahead for soft photon measurements

- Material budget between interaction diamond and forward detector not so small
- Bremsstrahlung has $1/E_{\gamma}$ distribution just like the signal
- $\cosh \eta$ dependence of material budget for beam pipe
- Ideas:
 - Consider adapting geometry
 - Adding sufficient PID to veto signals from electrons

Normalized photon Distribution All Detectors ALICE 3

Summary

- More photons at low energies were measured than expected from soft divergences
- The production can be estimated even from generator events
- ALICE 3 will measure soft photons in the forward direction

Direct calculation

- For specific processes, processes with and without photon emission may be calculated
- For hadronic processes usually model needed
- Here: Tensor pomeron exchange to model $\pi\pi$ scattering
- Unexpected: While $1/E_{\gamma}$ term appears as expected E_{ν}^{0} term different from Low's result
- Similar calculations may be made for $pp \rightarrow pp + \gamma \text{ or } pp \rightarrow pp + \pi\pi + \gamma$
- Requires charged particles measured over large rapidity
- Process without leptons reduces background
- Events can be selected via double-gap

FIG. 6. Diagrams for the reaction $\pi^-\pi^+ \rightarrow \pi^-\pi^+\gamma$ with tensor-pomeron exchange.

Separating contributions

$$\frac{\mathrm{d}N^{\gamma}}{\mathrm{d}^{3}k} \sim \frac{-1}{E_{\gamma}} \left(\sum_{\text{Particle } i} \frac{\eta_{i} e_{i} \mathbf{P_{i}}}{\mathbf{P_{i}K}} \right)^{2}$$

- Contributions from (individual particles)² and cross ulletterms
- Total cross section is only positive if charges are conserved
- but we can rewrite:

$$\frac{\mathrm{d}N^{\gamma}}{\mathrm{d}^{3}k} \sim \frac{-1}{E_{\gamma}} \left(\sum_{\text{Particle } i} \frac{\eta_{i} e_{i} \vec{\beta}_{i} \times \vec{k}}{1 - \vec{\beta}_{i} \cdot \vec{k}} \right)^{2}$$
where squares are positive

Is it enough to consider individual particles as the • photon source sometimes? E.g. to measure the dead-cone?

