

Pushing the frontiers of heavy-ion physics with ALICE 1, 2 and 3

The Quark-Gluon Plasma A performance in honour of Johanna's 60th birthday

Jochen Klein (CERN) February 11, 2025 Never at Rest: A Lifetime Inquiry of QGP

My way to ALICE

- Move from Kaiserslautern to Heidelberg autumn 2006
 - meeting Johanna in lecture on "Standard Model" (jointly with Otto Nachtmann)
 - CERN summer student \rightarrow ALICE offline group
 - wish to get more involved in detector aspects → ALICE TRD
- Extended stays at CERN since 2007
 - experiment in installation and commissioning phase, perfect moment to get in-depth views of full detector
 - going to CERN always felt like coming back to CERN

ALICE 1

ALICE during installation

during test of full super-module at PS beam line

TRD commissioning 2007-11

Connection and control of first installed super-modules

from connection to powering on

• Control and readout of detector in the cavern

• first readout with full DAQ chain

• Noise measurements

• verification of modified power supplies

ALICE 1, 2, 3 | Never at Rest, Feb 2025 | jochen.klein@cern.ch

TRD and TPC stations

Main control room

Cosmic trigger

- Remember: LHC not yet running cosmic rays only source of tracks for calibration and reconstruction
- 4 super-modules in horizontal configuration very low rate for cosmic rays
- **TRD cosmic trigger** to provide clean sample
 - random pre-selection, later from TOF trigger
 - TRD chamber: charge above threshold
 - TRD stack: threshold exceeded \geq 4 layers
 - TRD global: back-to-back configuration

Events from first night of triggering

First collisions

- First stable beams in the LHC
 imit first data taking with TRD
- Dedicated pre-trigger to wake up electronics based on LHC filling scheme

• Confirmation of signals and timing from pulse height plot (amplification peak)

Online tracking

- Multi-stage approach to tracking fully realised in hardware
 - chamber-wise reconstruction of **tracklets** (75k MCMs, 250k CPUs)
 - stack-wise reconstruction of **tracks** (90 FPGAs)

- Hardware-based reconstruction of track parameters
 - position
 - transverse momentum (incl. sign)
 - electron likelihood

Track-based triggers

- Online tracking complete within ~6 µs (latency!) up to large multiplicities
- Fast p_T reconstruction sufficiently precise for p_T thresholds at trigger level
- Level-1 triggers based track parameters fully reconstructed in hardware
 - (local) multiplicity
 - transverse momentum
 - charge sign
 - electron likelihood

Jet trigger

- Consider η - φ region of TRD stack \rightarrow area of typical jet cone (R ≈ 0.4)
- Minimum number of tracks above p_T threshold → jet trigger
 - enhancement of data sample
 - limited bias on fragmentation

ALICE 1, 2, 3 | Never at Rest, Feb 2025 | jochen.klein@cern.ch

TRD geometry in η - φ plane

Electron trigger 2012

- Heavy-flavour hadrons, incl. J/ψ , decay into electrons
- Selection of tracks with minimum p_T and electron likelihood → (di-)electron trigger

ALICE 1, 2, 3 | Never at Rest, Feb 2025 | jochen.klein@cern.ch

• separate optimisations for electrons from semi-leptonic heavy-flavour and J/ψ decays

J/ ψ with TRD trigger

- **TRD electron trigger enabled measured of J/\psi production** in p-Pb collisions at $\sqrt{s_N N} = 8.16$ TeV
 - little bandwidth allocated to min. bias sample
 - exploited precise (bit-equivalent) simulation of trigger chain for corrections

ALICE 1, 2, 3 | Never at Rest, Feb 2025 | jochen.klein@cern.ch

11

Drop read-out of ADC data 2014 (default mode in Run 3)

• TRD read-out separated in two phases

• fast read-out of trigger data (tracklets) → ~6 µs

• slow read-out of raw data (zero-suppressed ADC data) \int_{0}^{1} \rightarrow ~8 µs hand-shaking + data transmission

- Operation beyond few kHz relies on → avoiding read-out raw data → limiting data volume reading out tracklets only
- Readout upgrade for LHC Run 3
 - new tracklet format optimised for reconstruction
 - transition to common read-out card (instead of global tracking unit used for triggering)

Read-out timing

Tracking efficiency (online / offline)

ALICE 2 (current)

• High interaction rate: 50 kHz Pb-Pb, 1 MHz pp → limit ion backflow in TPC without gating!

GEM-based Time Projection Chamber

- Reconstruction of heavy-flavour decay vertices → improve pointing resolution
- Large statistics of untriggerable probes → continuous readout
- Data reduction based on tracking → online reconstruction

Consolidation and readout upgrade of all subsystems

ALICE 1, 2, 3 | Never at Rest, Feb 2025 | jochen.klein@cern.ch

MAPS-based Inner Tracking System and **Muon Forward Tracker**

Integrated online/ offline processing

Pushing beyond ALICE 2

- (Multi-)heavy-flavoured probes
 - method modified parton shower
 - transport properties
 - hadronisation
- Dielectrons down to low mass
 - temperature and early stage
 - chiral symmetry restoration
- Correlations and fluctuations
 - net-baryon fluctuations
 - transport properties
 - strong interaction potentials

ALICE 1, 2, 3 | Never at Rest, Feb 2025 | jochen.klein@cern.ch

Background from heavy-flavour decays $c\bar{c} \rightarrow D\bar{D} \rightarrow e^+ e^- \dots$

Key ingredients

- Excellent pointing resolution
- Tracking down to $p_T \approx 0$
- Excellent particle identification
- Large acceptance
- High rates for large data samples

Progress relies on detector performance and statistics

14

Heavy-flavour jets

- Evolution of high-energy partons described by QCD parton shower → radiation/splittings depend on
 - colour factors (gluon vs quark)
 - mass (charm and beauty)
 - interactions with QGP
- Programme
 - characterisation of jet radiation, e.g. dead cone effect (charm & beauty)
 - modification of jet substructure

Excellent prospects already with Run 3 and 4

ALICE 1, 2, 3 | Never at Rest, Feb 2025 | jochen.klein@cern.ch

15

- Challenging probes with strange decays
 - rare with large background
 - Imited pointing resolution for vertexing
- Strangeness tracking before decay → improved pointing resolution
- Programme
 - $\Omega_c \rightarrow \Omega$, hypertriton (Run 3 & 4)
 - Ξ_{cc} , Ω_{cc} , Ω_{ccc} (Run 5 & 6)

Novel technique for Run 3 and beyond

Multi-charm baryons

- Large heavy-flavour yields
 - combination of independently produced charm quarks
 → strong enhancement of multi-charm states
- Programme
 - multi-charm hadrons
 - (anti-)nuclei

Extreme sensitivity to equilibration and hadronisation in Run 5 & 6

ALICE 1, 2, 3 | Never at Rest, Feb 2025 | jochen.klein@cern.ch

17

Thermal radiation

• Hot QCD matter emits thermal radiation

- invariant mass of dileptons not affected by blueshift from expansion
- emission throughout the entire evolution
- Programme
 - average temperature (Run 3 & 4)
 - temporal evolution (Run 5 & 6) \rightarrow multi-differential measurements (p_T, v₂)
 - imprints of chiral mixing (Run 5 & 6)

Particularly interesting with ITS3 and ALICE 3

ALICE 3 tracking and vertexing

19

ALICE 1, 2, 3 | Never at Rest, Feb 2025 | jochen.klein@cern.ch Retractable vertex detector

Bent and stitched MAPS

- Exploit flexibility of thin ($\leq 50 \ \mu m$) silicon → truly cylindrical detection layers
 - bent sensors retain full performance, with bending radii down to cm
 - bending possible with full wafers
- MAPS realized in 65 nm technology (TPSCo imaging process with modification) → denser integration, **larger wafers**, stitching
 - power distribution and readout fully integrated → no external components in active area
 - wafer-sized stitched sensor, $O(10 \times 10) \mu m^2$ pixels \rightarrow MOSAIX under development for ALICE ITS3

Bent ALPIDE

Stitched sensors

New adventures ahead of us!

- New analyses with Run 3 & 4 data
- Innovative and exciting R&D
- Construction of new detectors
- Preparation for physics with ALICE 3

ALICE 1, 2, 3 | Never at Rest, Feb 2025 | jochen.klein@cern.ch

Thank you, Johanna!

Backup

ALICE 3

• Novel and innovative detector concept

- compact, lightweight all-silicon tracker
- retractable vertex detector
- extensive particle identification
- large acceptance
- superconducting magnet system
- continuous read-out and processing
- Further detectors
 - Muon identifier
 - Electromagnetic calorimeter
 - Forward Conversion tracker

Heavy-flavour transport

- Propagation of (traceable) heavy quarks depends on interaction with QGP
 - diffusion and approach to thermal equilibrium
 - extent of thermalisation depends on mass → beauty quarks retain more information
- Programme
 - determine spatial diffusion coefficient \rightarrow precise suppression (R_{AA}) and anisotropy (v₂)
 - directly measure **decorrelation of charm pairs** $\rightarrow D\overline{D}$ correlations

Required precision only achievable with ALICE 3

ALICE 1, 2, 3 | Never at Rest, Feb 2025 | jochen.klein@cern.ch

[CERN-LHCC-2022-009]

Momentum resolution

• Tracking and momentum measurement \rightarrow 3 - N space points in magnetic field • momentum resolution limited by multiple scattering and lever arm $\sigma_p / p \propto \frac{\sqrt{x/X_0}}{B \cdot L}$

metic field, minimise material • linear contribution from position resolution of hit measurements

 $\sigma_p / p \propto \frac{\sqrt{x/X_0}}{R \cdot I^2} \cdot p$ keep sub-dominant in region of interest

- Additional considerations
 - high rate \rightarrow occupancy \rightarrow combinatorics
 - acceptance and cost (area)

\rightarrow low material, large field, large lever arm, large-acceptance, high rate

Vertex resolution

- Primary and decay vertices reconstructed through pointing of tracks → 2 - 3 detection layers
 - pointing resolution fundamentally limited by multiple scattering: $\sigma_{\alpha} = \frac{0.0136 \,\text{GeV}/c}{\beta p} \sqrt{\frac{d}{X_0}}, \ \sigma_{\text{DCA}} = \sigma_{\alpha} \cdot r_0$

minimal radius minimal material

- constant contribution from position resolution → stay below limit from multiple scattering
- boundary conditions on proximity, e.g. radiation, beam aperture, ...

→ proximity, low material

