

Following ALICE's Footsteps: A Modern Tale of Neutrino Interactions in the Few-GeV Realm

LU Xianguo 卢显国 University of Warwick

Never at Rest: A Lifetime Inquiry of QGP Celebrating the 70th birthday of Prof. Johanna Stachel

2025 February 10, Bad Honnef

- □ Started PhD under Johanna in September 2009
- □ Thesis defence in October 2013

□ First PostDoc until August 2014, then moved to neutrino

Member of neutrino experiments w/ GeV neutrinos, in particular:

- nuSTORM (neutrinos from STORed Muons)
- JUNO (Jiangmen Underground Neutrino Observatory)

- □ A plot from ~ 1 June 2010
- MinJung and I were trying to understand transition radiation (TR) in full ALICE set up with cosmic muons
- □ We were surprised that the TRD signal was consistent with *pure* dE/dx from test beam...
- We tried very hard to understand it and in the end, I sent an email

"Anton, do you think the *theory* of TR could be wrong?"

One of my thesis topics: ALICE TRD performance in full ALICE set up Turned out could measure onset of TR \rightarrow in vs. out cosmics Need TPC tracking up to TeV \rightarrow combined track fit Need MIP for energy scale \rightarrow dedicated cosmic data with *B* = 0.1 T

Outline

1. Problems and opportunities with neutrino masses > Call for a GeV v_e and \bar{v}_e machine: nuSTORM

2. Using lepton-hadron correlations to study GeV neutrino interactions
 ➢ Transverse Kinematic Imbalance (TKI)

3. JUNO news!

Neutrino Mass and Mixing

Beyond Standard Model Standard Model Pontecorvo-Maki-Nakagawa-Sakata $\nu_1
u_2$ u_{μ} **PMNS** matrix Mass Ordering **Problems** What are the neutrino masses? • Mass gaps $(\Delta m_{21}^2, |\Delta m_{32}^2|)$ and ordering $(\text{sgn } \Delta m_{32}^2)$? □ What are the mixing parameters? • Mixing angles (θ_{12} , θ_{23} , θ_{13}) and CP-phase (δ_{CP})? Normal Inverted

Antineutrinos

□ 2-flavor oscillation: CP not observable

Antineutrinos

Opportunities3-flavor oscillation: CP-violation possible

DUNE

PARTICLE DETECTOR

PRODUCTION

Accelerator v Experiment	E_{v} /GeV @ Flux Peak	Far Detector Technology	Target Nuclei
T2K / Hyper-K	0.6	Water Cherenkov	H ₂ O
NOvA	2	Liquid Scintillator	СН
DUNE	2.4	LAr TPC	Ar

Signal = (**Beam flux** · **Oscillation probability** · Cross section) ⊕ Detector effects

Beam: ν_μ and ν
_μ
 Oscillation
 ν_μ and ν
_μ disappearance (most oscillated to ν_τ and ν
_τ)
 ν_e and ν
_e appearance, then CP violation

"β decay" of collision products (ν_{μ} from π, ν_{e} from K)

Neutrino beams from accelerators → Directional

Charge selection on π → High purity ν or $\overline{\nu}$ beams

 \Box Maximise ν_{μ} and $\bar{\nu}_{\mu}$ flux

"β decay" of collision products (ν_{μ} from π, ν_{e} from K)

Neutrino beams from accelerators → Directional

Charge selection on π → High purity ν or $\overline{\nu}$ beams

Call for a GeV ν_{e} and $\bar{\nu}_{e}$ Machine

Oscillation Signal = (Beam flux · Oscillation probability · Cross section) ⊕ Detector effects

- v_e (\bar{v}_e) cross sections: major δ_{CP} systematics
- Very few v_e scattering data
- \Box v_{μ} for v_{e} via lepton universality, but higher precision needed for δ_{CP}

Hyper-K example

Improving error of v_e/\overline{v}_e xsec ratio 4.9% \rightarrow 2.7% Improve δ_{CP} sensitivity by ~ 1 σ for 6 year

Significantly shorten running time to reach 5σ

Jeanne Wilson, Neutrino2022

Call for a GeV ν_{e} and $\bar{\nu}_{e}$ Machine

Oscillation Signal = (Beam flux · Oscillation probability · Cross section) ⊕ Detector effects

- v_e (\bar{v}_e) cross sections: major δ_{CP} systematics
- Very few v_e scattering data
- \Box v_{μ} for v_{e} via lepton universality, but higher precision needed for δ_{CP}

Hyper-K example

Improving error of $\nu_e/\overline{\nu}_e$ xsec ratio 4.9% \rightarrow 2.7%

Improve δ_{CP} sensitivity by ~ 1 σ for 6 year

Given Significantly shorten running time to reach 5σ

□ Shorten running time = reduce share cost

 Host
 Cost

 Co-Host
 Cost

Call for a GeV ν_{e} and $\bar{\nu}_{e}$ Machine

Oscillation Signal = (Beam flux · Oscillation probability · **Cross section**) ⊕ **Detector effects**

- v_e (\bar{v}_e) cross sections: major δ_{CP} systematics
- **U** Very few v_e scattering data
- $\Box \ \delta_{\rm CP} \sim v_e \text{ appearance } \sim \text{ no } v_e \text{ in beams}$
 - \bullet No *in situ* v_e measurements
- \Box v_{μ} for v_{e} via lepton universality, but higher precision needed for δ_{CP}
- ✓ Wishlist
 - 1. v_e and \bar{v}_e beams with the relevant energy for appearance
 - 2. Well-understood fluxes
 - 3. High statistics
 - 4. Low v_{μ} background

- $\Box \ \pi \ \text{captured by storage ring} \rightarrow \mu, \text{ instead of decay pipe} \rightarrow \nu$
- \Box $\bar{\nu}_{\mu} + \nu_{e}$ and $\nu_{\mu} + \bar{\nu}_{e}$ fluxes from μ^{\pm} decays
 - Storage ring: tunable fluxes

μ decay: perfect understanding of flux shape and normalisation

- Scientific objectives
 - * %-level ν cross sections
 - BSM searches, e.g. steriles beyond Short Baseline Neutrino program at FNAL
 - Test bed for muon collider technology

 $\bar{\nu}_{\rho}$

 W^{-}

 ν_u

 μ^{-}

v from STORed Muons (nuSTORM)

1st v beam facility & highest ever beam power based on stored muons

- \Box Fine tune neutrino fluxes via μ acceptance
 - p_{μ} spread: flux shape
 - p_{μ} mean: neutrino beam energy scan (vBES)

v from STORed Muons (nuSTORM)

1st v beam facility & highest ever beam power based on stored muons

- \Box Fine tune neutrino fluxes via μ acceptance
 - p_{μ} spread: flux shape
 - p_{μ} mean: neutrino beam energy scan (vBES)

v from STORed Muons (nuSTORM)

1st v beam facility & highest ever beam power based on stored muons

- $\hfill\square$ Fine tune neutrino fluxes via μ acceptance
 - p_{μ} spread: flux shape
 - p_{μ} mean: neutrino beam energy scan (vBES)

- $v_e + \bar{v}_\mu$ flux from $\mu^+ \to e^+ v_e \bar{v}_\mu$
- Maximise μ capture efficiency
- **D** Return Arcs and Straight
 - $< p_{\mu} >$ tunable between 1 and 6 GeV/*c*, spread ±16%

A Brief History of nuSTORM

CERN-PBC-REPORT-2019-003 DOI:10.17181/CERN.FQTB.08QN

2012-13 Lol and Proposal to FNAL PAC [arXiv:1206.0294, arXiv:1308.6822], Eol to CERN [arXiv:1305.1419]

- Sterile neutrinos
- Neutrino-nucleus scattering
- Technology test bed for muon accelerators
- 2014 Steriles sensitivity [Phys.Rev.D 89, 071301 (2014)]
 - nuSTORM at FNAL
- 2019 Feasibility of nuSTORM at CERN [CERN-PBC-REPORT-2019-003]
 - SPS 100 GeV proton beam
 - Optimised for neutrino-nucleus scattering, maintaining sensitivity to BSM (steriles + non-unitarity, NSI, Lorentz-invariance/CPT violation)
- 2022 Snowmass 2021 [arXiv:2203.07545]
 - Advocating synergy with ENUBET and Muon Collider Demonstrator
 - ✓ Muon Collider demonstrator
 - ✤ 6-D cooling
 - \checkmark _nuSTORM as test bed for muon storage ring
 - Complete implementation for large acceptance
 - R&D for very precise determination of stored-muon energy and spread

□ Why do we need nuSTORM?

Wishlist

- 1. v_e and \bar{v}_e beams with the relevant energy for appearance
- 2. Well-understood fluxes
- 3. High statistics
- 4. Low ν_{μ} background

What other physics can we do with it?

Outline

1. Problems and opportunities with neutrino masses \triangleright Call for a GeV ve and \overline{v} e machine: nuSTORM

2. Using lepton-hadron correlations to study GeV neutrino interactions
 ➢ Transverse Kinematic Imbalance (TKI)

3. JUNO news!

Why Neutrino Interactions?

TKI

2010: Watched a live ATLAS seminar in the Tower—didn't see what the big deal was...

- Over time in ALICE, learnt that imbalance & correlations are powerful tools for studying medium effects.
- 2014/2015: Moved into neutrinos and *started to* study neutrino interactions with hadron-lepton correlations.
- Transverse Kinematic Imbalance (TKI) now active topic in T2K, MINERvA, MicroBooNE, SBND, ICARUS with real data, and also in future projects like DUNE and nuSTORM.

Transverse Kinematic Imbalance (TKI)

Stationary free nucleon target

Nuclear target (A > 1)
Fermi motion
Final-state interactions (FSI)
2-particle-2-hole (2p2h)

Missing energy

From Wikipedia, the free encyclopedia

[...]

 \vec{p}_{ν}

neutrinos.^[1] In general, missing energy is used to infer the presence of non-detectable particles and is expected to be a signature of many theories of physics beyond the Standard Model.^{[2][3][4]}

[...]

hadron colliders.^[5] The initial momentum of the colliding partons along the beam axis is not known -

TKI

Multi-dimensional observation Momentum (magnitude)

- □ Angle
- □ Asymmetry

Lu, et al., Phys.Rev.D 92, 051302 (2015) Lu, et al., Phys.Rev.C 94, 015503 (2016) Lu & Sobczyk, Phys.Rev.C 99, 055504 (2019) Cai, Lu, Ruterbories, Phys.Rev.D 100, 073010 (2019)

Transverse Boosting Angle $\delta \alpha_{T}$

Transverse Boosting Angle $\delta \alpha_{T}$ $ec{p}_{ ext{T}}^{\ell'}$ $ec{p}_{ ext{T}}^{\ell'}$ $\delta \vec{p}_{\mathrm{T}} = \vec{p}_{\mathrm{T}}^{\mathrm{N}} - \Delta \vec{p}_{\mathrm{T}}$ $\Delta p_{_{\mathrm{T}}}$ boosting outgoing hadron $\delta \vec{p}_{\rm T} = \vec{p}_{\rm T}^{\rm N} - \Delta \vec{p}_{\rm T}$ $\Delta p_{_{\rm T}}$ dragging outgoing hadron $\delta \phi_{\rm T}$ $\delta \phi_{\rm T}$ $ec{p}_{ ext{T}}^{ extbf{N}}$ $\delta \vec{p}_{\mathrm{T}}$ $\delta \alpha_{\rm T}$ $\Delta E^{\rm N'} =$ $\Delta E^{\rm N'}$ \equiv

FSI and momentum sharing with extra particlespion absorption2p2h

TKI Measurements at T2K, MINERvA, and nuSTORM

TKI Measurements at T2K, MINERvA, and nuSTORM

TKI Measurements at T2K, MINERvA, and nuSTORM

Outline

1. Problems and opportunities with neutrino masses \triangleright Call for a GeV ve and \overline{v} e machine: nuSTORM

2. Using lepton-hadron correlations to study GeV neutrino interactions → Transverse Kinematic Imbalance (TKI)

3. JUNO news!

Jiangmen Underground Neutrino Observatory (JUNO)

- □ JUNO: *primarily* a reactor neutrino experiment
 - ✤ 20 kt liquid scintillator
 - ✤ 17,612 20-inch PMTs + 25,600 3-inch PMTs
 - > 77.9% photocathode coverage

***** Expected mass ordering sensitivity with reactor neutrinos: 2.9 sigma in 6 years

- $\hfill\square$ Turns out big enough to contain atmospheric v up to 10 GeV
 - \succ 3-10 GeV sensitive to v mass ordering

35

https://www.nature.com/articles/d41586-024-00694-5

JUNO

@LIU Yuexiang

When I left Heidelberg and the field, I wasn't sure what to expect. But looking back, I realise those years had prepared me well for the journey ahead. Thank you, Johanna!

Now, let's celebrate Johanna's special day and this wonderful gathering!

