Chasing Critical Fluctuations with ALICE

Mesut Arslandok subtractionvensityeavy-ion collisions

The International Workshop "Never at Rest: A Lifetime Inquiry of QGP" 11 February 2025, Physikzentrum, Bad Honnef, Germany

The Method

"Discourse on the method of rightly conducting the reason and seeking the truth in the sciences", **René Descartes**

"The 1st was <u>never to accept anything for true</u> which I did not clearly know to be such; that is to say, carefully to avoid precipitancy and prejudice, and to comprise nothing more in my judgment than what was presented to my mind so clearly and distinctly as to exclude all ground of doubt.

The 2nd, to divide each of the difficulties under examination into as many parts as possible, and as might be necessary for its adequate solution.

The 3rd, to conduct my thoughts in such order that, by commencing with objects the simplest and easiest to know, I might ascend by little and little, and, as it were, <u>step by step</u>, to the knowledge of the more complex; assigning in thought a certain order even to those objects which in their own nature do not stand in a relation of antecedence and sequence.

The last, in every case to make enumerations so complete, and reviews so general, that I might be assured that nothing was omitted."

Outline

- **1)** Goal: Discovery of crossover phase transition \rightarrow Critical fluctuations
- 2) **Observable:** net-proton number fluctuations
- 3) Experimental challenges:
 - Proton identification
 - Event pile-up mitigation and energy loss calibration in the TPC
 - Efficiency corrections
 - Establishing a statistical baseline
- 4) Results:
 - Measurement of 2nd and 3rd order cumulants
- 5) The quest continues:
 - Prospects for ALICE 3 era

Phase transition: Water

Phase diagram of water (Electro-magnetic interaction)

Phase transition: QGP

"Never at Rest: A Lifetime Inquiry of copar m 10022 steads to a fugacity sun Athan Sbk V ale University model

Nature of QCD phase diagram

<u>J. Stachel, A. Andronic, P. B. Munzinger and K. Redlich, Nature 561 (2018) 321</u> <u>HotQCD Collaboration, Phys.Lett. B 795 (2019) 15</u> <u>ALICE Collaboration, Phys. Rev. Lett. 133 (2024) 9, 092301</u>

- > Vanishing u, d quark masses:
 - \Rightarrow Vicinity to 2nd order O(4) criticality
 - \Rightarrow Pseudocritical features at the crossover due to massless modes
- At LHC energies
 ⇒ $T_{\rm pc}^{\rm LQCD} \approx T_{\rm fo}^{\rm ALICE} = 156.5 \pm 3 \, {\rm MeV}$ ⇒ $\mu_B^{\rm ALICE} = 0.71 \pm 0.45 \, {\rm MeV}$
- Fact: No experimental confirmation of crossover
 - Signature: Long range correlations & increased fluctuations

$\frac{P}{T^4} = \frac{1}{VT^3} \ln Z \left(V, T, \mu_{B,Q,S} \right) \text{ LQCD} \stackrel{\text{(V)}}{\leftrightarrow} \stackrel{\text{(V)}}{\text{Experiment}} = \frac{O(P/P)}{P}$

LQCD

$$\chi_{klmn}^{BQSC} = \frac{\partial^{(k+l+m+n)} [P(\hat{\mu}_B, \hat{\mu}_Q, \hat{\mu}_S, \hat{\mu}_C)/T^4]}{\partial \hat{\mu}_B^k \partial \hat{\mu}_Q^l \hat{\mu}_S^m \partial \hat{\mu}_C^n} \bigg|_{\vec{\mu}=0}$$

Baryon number (B), Strangeness (S), Electric charge (Q), Cham (C)

 VT^3

Baryon number (B), Strangeness (S), Electric charge (Q), Cham (C)

Baryon number (B), Strangeness (S), Electric charge (Q), Cham (C)

"Never at Rest: A Lifetime Inquiry of QGP", 11.02.2025

Experimental challenges

ALICE performance

Pb-Pb Vs_{NN} = 5.02 TeV

to one of the second se

C dE

dE/dx calibration and PID

Efficiency correction

Event/track selection

A Large Ion Collider Experiment

Main detectors used: \geq Inner Tracking System (ITS) \rightarrow Tracking and vertexing \geq Time Projection Chamber (TPC) \rightarrow Tracking and Particle Identification (PID) Transition Radiation Detector (TRD) \geq → Tracking and PID \geq Time Of Flight (TOF) → Tracking and PID V0 🗲 \rightarrow Centrality determination Ę ALICE 09 18/05/2011 b-Pb vs_{NN}=2.76 TeV 0.8 ALIC 0.7 03/07/2012 b-Pb Vshin = 2.76 TeV 0.6 0.2 0.3 2 3 4 5 6 7 8 9 1 0

p (GeV/c)

0.5

ALI-PERF-27125

1.5

2 2.5

3 3.5

p (GeV/c)

Challenge 1: Particle identification (PID)

PID vs Efficiency

PID vs Efficiency

Solution: Identity Method

Cut-based approach (track counting) or Identity method (probability counting)

A. Rustamov, M. Gazdzicki, M. I. Gorenstein, PRC 86, 044906 (2012), PRC 84, 024902 (2011) A. Rustamov, M. Arslandok, Nucl. Instrum. A946 (2019) 162622

"Never at Rest: A Lifetime Inquiry of QGP", 11.02.2025

Mesut Arslandok, Yale University

Solution: Identity Method

A. Rustamov, "Fuzzy logic" Phys. Rev. C 110 (2024) 6, 064910

Challenge within Identity Method

Precise description of **line shapes** → **Energy loss** calibration & event **pileup** mitigation

10

Out-of-bunch pileup events

M. Arslandok, E. Hellbär, M. Ivanov, R.H. Münzer and J. Wiechula, Particles 2022, 5(1), 84-95 ALICE TPC Collaboration JINST 19 (2024) P02038

Line shapes

"Never at Rest: A Lifetime Inquiry of QGP", 11.02.2025

units)

TPC d*E*/dx (arb.

160

140

100 80 60

> 40 20

ALI-PERF-3849

0.2

Challenge 2: Efficiency correction

Challenge 2: Efficiency correction

Binomiality of the detector response is important for the efficiency correction

Challenge 2: Efficiency correction

Very good closure despite the slight deviation from binomial loss

Efficiency correction with binomial assumption:

T. Nonaka, M. Kitazawa, S. Esumi, Phys. Rev. C 95, 064912 (2017)

Adam Bzdak, Volker Koch, Phys. Rev. C86, 044904 (2012)

"Never at Rest: A Lifetime Inquiry of QGP", 11.02.2025

Challenge 3: Establishing a non-critical baseline

How to interpret the data?

How to interpret the data?

Source of the deviation?

ALICE Coll., Phys. Lett. B 807 (2020) 135564 J. Stachel , P. Braun-Munzinger, A. Rustamov, NPA 960 (2017) 114–130

"Never at Rest: A Lifetime Inquiry of QGP", 11.02.2025

Correlation length

ALICE Coll., Phys. Lett. B 807 (2020) 135564 J. Stachel , P. Braun-Munzinger, A. Rustamov, NPA 960 (2017) 114–130

"Never at Rest: A Lifetime Inquiry of QGP", 11.02.2025

nate in small quantum fluctuations present during the inflationary epoch. During the rapid expansion of the universe in this epoch, these quantum fluctua-

Only **early correlations** can be long range in rapidity

Figure 1: The red and green cones are the location of the events in causal relationship with the particles A and B respectively. Their intersection is the location in space-time of the events that $\max_{avy} \overline{c_2}$ r \mathcal{Y}_{ave} the \mathcal{Y}_{part} cles A and B.

from the last rescattering of two particles A and B on the freeze-out surface. These are the red and green cones pointing to the past. Any event that has a A. Dumitru, F. Gells, L. McEerrah, and R. Venuggodan, Nucl. Phys. As to (2008) 91 event horizon. Any event that induces a correlation between the particles A and

B must lie in the overlap of their event horizons. Therefore, if the particles A Mesut Arslandok, Yale b nive fait lities y_A and y_B , the processes that caused their correlations

Baryon number conservation & cluster formation

"Never at Rest: A Lifetime Inquiry of QGP"Specifics: dE/dx

Resonance decays

- > Net- π and net-K are strongly dominated by resonance contributions
- Net-p is free from resonance contributions
 - → Isospin randomization, at $\sqrt{s_{\rm NN}}$ > 10 GeV: net-B ↔ net-p

(M. Kitazawa, and M. Asakawa, Phys. Rev. C 86, 024904 (2012))

Results: 2nd and 3rd order cumulants of net-p

2nd order cumulants of net-p

- > Deviation from Skellam baseline is due to **baryon number conservation**
- ALICE data suggest long range correlations, $\Delta y = \pm 2.5$ unit or longer \rightarrow earlier in time <u>A. Dumitru, F. Gelis, L. McLerran, and R. Venugopalan, *Nucl. Phys. A* 810 (2008) 91</u>
- > Event generators based on string fragmentation (HIJING) conserve baryon number over $\Delta y = \pm 1$ unit

3rd order cumulants of net-p

Data agree with Skellam baseline "0" $\rightarrow \mu_B$ is very close to 0 (ALICE Collaboration, PRL. 133 (2024) 9, 092301)

3rd order cumulants of net-p

- **Data agree with Skellam baseline "0"** $\rightarrow \mu_B$ is very close to 0 (ALICE Collaboration, *PRL*. 133 (2024) 9, 092301)
- EPOS and HIJING deviate from "0"
 - They conserve global charge but p/\overline{p} deviates from unity: 1.025±0.004 (EPOS), 1.008±0.002 (HIJING)
 - Volume fluctuations for 2nd and 3rd order cumulants are not negligible

The quest continues (ALICE [2,3])

Future of ALICE

ALICE 2 (2022-2030)

- ✓ Continuous readout:
 - $ightarrow \sim$ 50kHz Pb–Pb min. bias
 - $\rightarrow \sim$ 5 pileup events within the TPC
- ✓ Improved vertexing
- ✓ High tracking efficiency at low p_T

ALICE 3 (beyond early 2030s)

- **High statistics** \rightarrow O (10⁹) billion events
- $\textbf{Large acceptance } \rightarrow |\eta| < 4$
- ✓ **High PID purity** → $0.3 < p_T < 10 \text{ GeV/c}$
- ✓ High efficiency → \sim 95%
- ✓ Excellent vertexing → O (5µm) resolution

Identity Method in ALICE 3: Purity in PID

0.3 No full overlap of the TOF signal

"Never at Rest: A Lifetime Inquiry of QGP", 11.02.2025

2nd order cumulants of net-p in ALICE 3

More differential and high precision to disentangle:

Thermal blurring, Initial-state fluctuations, baryon annihilation, excluded volume effects, baryon number conservation ...

(0.3

Criticality search in ALICE 2 and 3

Simulation of the Critical Fluctuations (CF) is based on PQM model <u>G. A. Almasi, B. Friman, and K. Redlich, Phys. Rev.D96 (2017), 014027</u>

> ALICE 2:

 \rightarrow More than 5 billion central Pb-Pb collisions is required

 \succ ALICE 3:

 \rightarrow x3 larger statistics: >4 σ significance with ALICE 2 acceptance

Completely new net-charm fluctuations

> 2^{nd} order → Correlation length of charm

4th order → Close to T_{pc} charmed baryon fluctuations are about 50% larger than expected in a HRG based on known charmed baryon resonances (PDG-HRG) → missing states of QCD

Summary

ALICE 1 (2010-2018)

- > LQCD expectations \rightarrow agreement up to 3rd order
- \blacktriangleright Large correlation volume \rightarrow B and S correlation come from early times
- > Lund-based models \rightarrow describe 1st order but fail in 2nd for both B and S

ALICE 2-3 (2023-203?)

- ➤ 4th order cumulants of net-B are in progress
- > Net B and S: Criticality search at 6th and higher order cumulants
- > Net C: correlation length in charm sector
- > High precision and more differential: Constraining individual dynamic signals
 - Thermal blurring, Initial-state fluctuations, Baryon annihilation, Excluded volume effects, Baryon number conservation ...

▶...