2005	2008	2014	2018	2022	2025
00000	00000	00	000	o	00

Looking back on 20 years of modelling jet quenching

Korinna Zapp

Lund University

International Workshop "Never at Rest: A Lifetime Inquiry of QGP"

Korinna Zapp (Lund University)

20 years of modelling jet quenching

10.02.2025

1/34

2005	2008	2014	2018	2022	2025
●0000	00000	00	000	o	00
20 years ago					

▶ It is the 100th anniversary of Einstein's magic year,

2005	2008	2014	2018	2022	2025
●0000	00000	00	000	o	00
20 years ago					

- It is the 100th anniversary of Einstein's magic year,
- Angela Merkel is elected as Germany's first female chancellor,

Johanna Stachel first female DPG president in 2012

2005	2008	2014	2018	2022	2025
●0000	00000	00	000	o	00
20 years ago					

- It is the 100th anniversary of Einstein's magic year,
- ▶ Angela Merkel is elected as Germany's first female chancellor,

Johanna Stachel first female DPG president in 2012

RHIC serves the perfectly liquid quark-gluon soup,

2005	2008	2014	2018	2022	2025
●0000	00000	00	000	o	00
20 years ago					

- It is the 100th anniversary of Einstein's magic year,
- ▶ Angela Merkel is elected as Germany's first female chancellor,

Johanna Stachel first female DPG president in 2012

- RHIC serves the perfectly liquid quark-gluon soup,
- jet quenching looks like this

2005	2008	2014	2018	2022	2025
●0000	00000	00	000	o	00
20 years ago					

- ▶ It is the 100th anniversary of Einstein's magic year,
- ▶ Angela Merkel is elected as Germany's first female chancellor,
- RHIC serves the perfectly liquid quark-gluon soup.
- ▶ jet quenching looks like this

and in Heidelberg a young physicist finishes her Master and together with her supervisor think about a PhD project.

Johanna Stachel first female DPG president in 2012

Korinna Zapp (Lund University)

20 years of modelling jet quenching

2005	2008	2014	2018	2022	2025
○●○○○	00000	00	000	o	00

The conclusion

At the LHC

2005	2008	2014	2018	2022	2025
⊙●○○○	00000	00	000	o	00

The conclusion

At the LHC

will turn into

 \Rightarrow We need a model for this!

Korinna Zapp (Lund University)

2005	2008	2014	2018	2022	2025
00●00	00000	00	000	o	00

2005	2008	2014	2018	2022	2025
00●00	00000	00	000	o	00

2005	2008	2014	2018	2022	2025
○○●○○	00000	00	000	o	00

- ► Q_{hard} : O(100 GeV 1 TeV)
- ▶ Q_{hadro}: O(1 GeV)
- $\blacktriangleright \ Q_{\sf split}: \ Q_{\sf hard} > Q_{\sf split} > Q_{\sf hadro}$

2005	2008	2014	2018	2022	2025
00●00	00000	00	000	o	00

- Q_{hard} : $\mathcal{O}(100 \text{ GeV} 1 \text{ TeV})$
- ► Q_{hadro} : O(1 GeV)
- $\blacktriangleright \ Q_{\sf split}: \ Q_{\sf hard} > Q_{\sf split} > Q_{\sf hadro}$

2005	2008	2014	2018	2022	2025
00●00	00000	00	000	o	00

- Q_{hard} : $\mathcal{O}(100 \text{ GeV} 1 \text{ TeV})$
- ▶ Q_{hadro}: O(1 GeV)
- $\blacktriangleright \ Q_{\sf split}: \ Q_{\sf hard} > Q_{\sf split} > Q_{\sf hadro}$
- ► *T*(x, *t*): 150 MeV 500 MeV

2005	2008	2014	2018	2022	2025
00●00	00000	00	000	o	00

- Q_{hard} : $\mathcal{O}(100 \text{ GeV} 1 \text{ TeV})$
- ▶ Q_{hadro}: O(1 GeV)
- $\blacktriangleright \ Q_{\sf split}: \ Q_{\sf hard} > Q_{\sf split} > Q_{\sf hadro}$
- ► *T*(x, *t*): 150 MeV 500 MeV

Korinna Zapp (Lund University)

▶ q: ?

20 years of modelling jet quenching

2005	2008	2014	2018	2022	2025
000●0	00000	00	000	o	00

Is it worth the effort?

jets are a "calibrated" probe: well understood in p+p

fixed order matrix elements + resummation (parton showers)

jet quenching allows to observe process of equilibration

soft observables see result of equilibration

- ▶ jets carry information about spacial and temporal structure of medium
- jets give access to scale dependence of medium properties

Korinna Zapp (Lund University)

20 years of modelling jet quenching

2005	2008	2014	2018	2022	2025
00000					

2005	2008	2014	2018	2022
0000●	00000	00	000	o
			ALE	MA-MICHAT- PHYSIL

Korinna Zapp (Lund University)

2005	2008	2014	2018	2022	2025
00000	●0000	00	000	o	00

JEWEL: Basic idea and assumptions

Starting point

- complexity of problem asks for Monte Carlo event generator
- consistent dynamical model of jet evolution in medium
- anchored in analytical understanding of pQCD

Assumptions

- 1. medium as seen by jet: collection of quasi-free partons
- 2. use infra-red continued perturbation theory to describe all jet-medium interactions
- 3. formation times govern the interplay of different sources of radiation
- 4. use results from eikonal limit to include LPM-effect

Zapp, Krauss & Wiedemann, JHEP 1303 (2013) 080

2005	2008	2014	2018	2022	2025
00000	⊙●○○○○	00	000	o	00
JEWEL	in a nutshell				

▶ jet production in initial N+N collisions: ME+PS

2005	2008	2014	2018	2022	2025
00000	⊙●○○○○	00	000	o	00
JEWEL	in a nutshell				

......

jet production in initial N+N collisions: ME+PS

- re-scattering: ME+PS
 - generates elastic & inelastic processes
 - with leading log correct relative rates
 - general kinematics

2005	2008	2014	2018	2022	2025
00000	⊙●○○○○	00	000	o	00
IE\//EL_ir	n a nutshell				

jet production in initial N+N collisions: ME+PS

- re-scattering: ME+PS
 - generates elastic & inelastic processes
 - with leading log correct relative rates
 - general kinematics

emission with shortest formation time is realised

- all emissions (vacuum & medium induced) treated equally
- hard structures remain unperturbed

2005	2008	2014	2018	2022	2025
00000	⊙●○○○○	00	000	o	00
JEWEL	in a nutshell				

- jet production in initial N+N collisions: ME+PS
- re-scattering: ME+PS
 - generates elastic & inelastic processes
 - with leading log correct relative rates
 - general kinematics
- emission with shortest formation time is realised
 - all emissions (vacuum & medium induced) treated equally
 - hard structures remain unperturbed
- LPM interference
 - also governed by formation times
 - without kinematic restrictions

Korinna Zapp (Lund University)

20 years of modelling jet quenching

Zapp, Stachel, Wiedemann, JHEP 1107 (2011) 118

2005	2008	2014	2018	2022	2025
00000	00●00	00	000	o	00

Three years later...

20 years of modelling jet quenching

Korinna Zapp (Lund University)

Where does the 'lost' energy go?

Zapp, Ingelman, Rathsman, Stachel, Wiedemann, Eur. Phys. J. C 60, 617 (2009)

- medium response before there was medium response
- relativ angle almost independent of temperature

Korinna Zapp (Lund University)

20 years of modelling jet quenching

2005	2008	2014	2018	2022	2025
00000	○○○○●	00	000	o	00

Where does the 'lost' energy go?

K. Zapp, PhD thesis

enhancement of fragments around jets out to large angles

2005	2008	2014	2018	2022	2025
00000	00000	●○	000	o	00

Some years later: the jet profile is measured

CMS, Phys. Lett. B 730 (2014) 243

Kunnawalkam Elayavalli, Zapp, JHEP 1707 (2017) 141

Korinna Zapp (Lund University)

20 years of modelling jet quenching

Fraction of jet p⊥ contained in annulus at distance r from jet axis

 Δr

CMS, JHEP 05 (2021), 116 [arXiv:2101.04720]

 Δr

2005	2008	2014	2018	2022	2025
00000	00000	00	●○○	o	00

Identifying hard structures inside jets: SoftDrop

M. Dasgupta, A. Fregoso, S. Marzani, G. P. Salam, JHEP 1309 (2013) 029
 A. J. Larkoski, S. Marzani, G. Soyez, J. Thaler, JHEP 1405 (2014) 146

- SoftDrop procedure: identifies hard 2-prong structure inside a jet
- removes soft large angle particles mostly coming from background

walk backwards through the jet clustering sequence

- ▶ stop when momentum sharing $z_g = \frac{\min(p_{\perp,1}, p_{\perp,2})}{p_{\perp,1} + p_{\perp,2}} > z_{cut}$
- ▶ at LO: $p(z_g) \propto P(z_g) + P(1 z_g) \rightarrow$ proportional to splitting function

2005	2008	2014	2018	2022	2025
00000	00000	00	○●○	o	00

Measuring the splitting function?

- suppression of symmetric splittings
- JEWEL describes this nicely
- but without a modified splitting function!

2005	2008	2014	2018	2022	2025
00000	00000	00	⊙⊙●	o	00

What is going on here?

Milhano, Wiedemann, Zapp, Phys. Lett. B 779 (2018), 409-413

Improving the subtraction procedure

- \blacktriangleright thermal momentum of recoils part of background \rightarrow has to be subtracted
- more robust and flexible procedure implemented

allows to calculate IRC-unsafe observables

2005	2008	2014	2018	2022	2025
00000	00000	00	000	o	●0

Looking ahead

Open questions

- To what extent is medium response thermalised?
- How much of the large Δr enhancement is due to medium induced radiation?
- Is the wake hydrodynamic response or momentum conservation?

Other jetty questions

- When and how is colour coherence lost?
- At which scale are quasiparticles in the QGP resolved?
- What is going on in small systems?
- $\rightarrow\,$ no answer without understanding of medium response

Thank you!

2025

Medium's response to energy deposited by jets

- common assumption: immediate thermalisation
- ► JEWEL: three options

- 1. ignore recoiling thermal partons
- 2. extract source term for hydrodynamic description of medium

Flörchinger, Zapp, EPJC 74 (2014) no. 12, 3189

10.02.2025

- 3. include recoiling partons
 - recoiling partons becomes colour neighbour of hard parton
 - recoiling partons do not re-interact
 - have so subtract thermal component of recoil momentum

Korinna Zapp (Lund University)

20 years of modelling jet quenching

21 / 34

ideal situation: flat background – can be subtracted

- ideal situation: flat background can be subtracted
- ▶ more realistic: fluctuating background can be subtracted on average, have to unfold

- ideal situation: flat background can be subtracted
- ▶ more realistic: fluctuating background can be subtracted on average, have to unfold
- adding medium response: correlated background
 - \blacktriangleright part of the background is correlated with jet \rightarrow medium response
 - activity above uncorrelated background
 - correlated background cannot and should not be subtracted

- ideal situation: flat background can be subtracted
- more realistic: fluctuating background can be subtracted on average, have to unfold
- adding medium response: correlated background
 - $\blacktriangleright\,$ part of the background is correlated with jet $\rightarrow\,$ medium response
 - activity above uncorrelated background
 - correlated background cannot and should not be subtracted
- finally: also fluctuations in correlated part of background matter

Korinna Zapp (Lund University)

Background subtraction in A+A – general considerations

- experimentally: background subtraction absolutely necessary
- what would be there without the jet should be subtracted
- correlated background component should stay
- for fair theory-data comparison: procedure on theory side as close to experimental one as possible
- but: JEWEL only simulates jets, no full events
- have to implement procedure that equals experimental one in spirit
- ▶ keep the recoils, but subtract incoming thermal momenta

Background subtraction in JEWEL

old method: 4-momentum subtraction

- ▶ for each thermal momentum add dummy momentum with very small energy to event
- ▶ for each dummy in jet subtract corresponding thermal 4-momentum from jet 4-momentum
- works fine for IRC safe observables
- for jet sub-structure: may have to do it iteratively
- one observable problematic: jet mass

4-momentum subtraction: jet mass

4-momentum subtraction: jet mass

$$P_{
m jet} = P_{
m remainder} + p'_{
m hard} + p_{
m recoil} - p_{
m thermal} = P_{
m remainder} + p'_{
m hard} - q$$

if p'_{hard} ends up outside the jet cone

not all that unlikely

$$P_{
m jet} = P_{
m remainder} + p_{
m hard}' - q$$

 $M_{
m jet}^2 = (P_{
m remainder} - q)^2 = M_{
m remainder}^2 + \hat{t} - 2qP_{
m remainder}$

.

20 years of modelling jet quenching

10.02.2025

A better choice: constituent subtraction

Berta, Spousta, Miller, Leitner, JHEP 06 (2014), 092 [arXiv:1403.3108]

The algorithm

- 1. write all 4-momenta as $p = ((m_{\delta} + p_{\perp}) \cosh y, \ p_{\perp} \cos \phi, \ p_{\perp} \sin \phi, \ (m_{\delta} + p_{\perp}) \sinh y)$
- 2. form all pairs of a particle momentum and a thermal momentum, sort by ΔR
- 3. go through ordered list of pairs, for each pair:
 - ▶ subtract smaller from larger p_{\perp} , set smaller p_{\perp} to zero
 - subtract smaller from larger m_{δ} , set smaller m_{δ} to zero
- 4. remove all momenta with zero p_{\perp}

Constituent subtraction: jet mass

Constituent subtraction: jet mass

Constituent subtraction: Some remarks

- squared mass remains positive by construction
- other observables don't change w.r.t. 4-momentum subtraction
- two possible workflows:
 - 1. first reconstruct jets, then subtract jet-wise
 - 2. first subtract event, then reconstruct jets

- inside jets all thermal momenta disappear
- can keep track of hadron flavour inside jets
- can calculate IRC unsafe observables

Korinna Zapp (Lund University)

Constituent subtraction: jet mass

ALICE, Phys. Lett. B 776 (2018), 249-264 [arXiv:1702.00804]

Constituent subtraction: groomed jet mass

Korinna Zapp (Lund University)

20 years of modelling jet quenching

Constituent subtraction: groomed jet mass

Korinna Zapp (Lund University)

20 years of modelling jet quenching

32 / 34

Constituent subtraction: groomed jet mass

Korinna Zapp (Lund University)

20 years of modelling jet quenching

Constituent subtraction: jet fragmentation function

ATLAS, Eur. Phys. J. C 77 (2017) no.6, 379 [arXiv:1702.00674]

jet collimation effect too strong, but soft part not bad

Korinna Zapp (Lund University)

20 years of modelling jet quenching