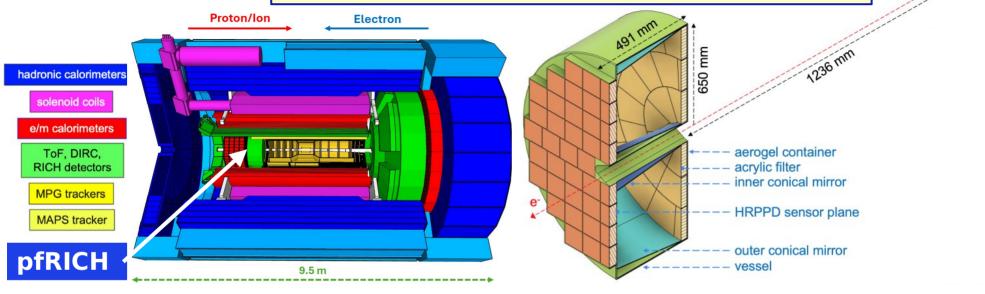

Studies of LAPPD and HRPPD photodetectors for Cherenkov imaging application

<u>Jinky Agarwala</u>², Chandradoy Chatterjee², Silvia Dalla Torre², Mauro Gregori², Saverio Minutoli¹, Mikhail Osipenko¹, Fulvio Tessarotto²

¹INFN Genova ²INFN Trieste

XII International Workshop on Ring Imaging Cherenkov Detectors -RICH2025, Mainz, Germany



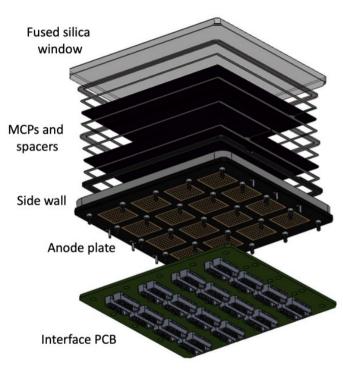
Outline

- pfRICH in the ePIC experiment of the EIC
- LAPPD/HRPPD baseline photosensors for pfRICH application
- Recent and ongoing LAPPD/HRPPD studies
 - LAPPD timing studies CERN PS beam test, October 2022
 D. S. Bhattacharya, et al., NIMA 1058 (2024) 168937
 - LAPPD responses in magnetic fields CERN, October 2023 and March 2024
 J. Agarwala, et al., NIMA (2024) 170122
 - HRPPD ageing studies Trieste laboratory 2025 (started on August 11, 2025)

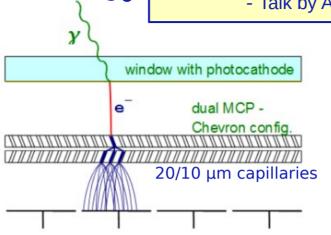
pfRICH in ePIC

A Proximity-Focusing RICH Detector for the ePIC Experiment at the EIC -Talk by Brian Page (18/09/2025 01:40 pm)

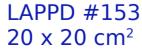
Detector requirements:


- Time resolution better than 100 ps
 (3σ separation between particle hypothesis pairs)
- ◆ Magnetic field tolerance of 1.4 T
- Radiation hardness excess photons produced
 (in Aerogel radiator) by beam induced charged particles

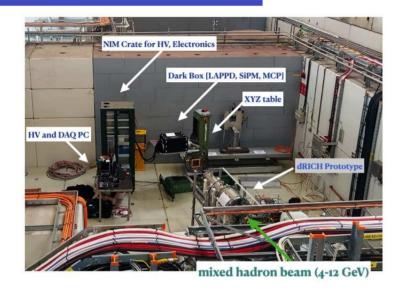
HRPPDs – baseline photosensors

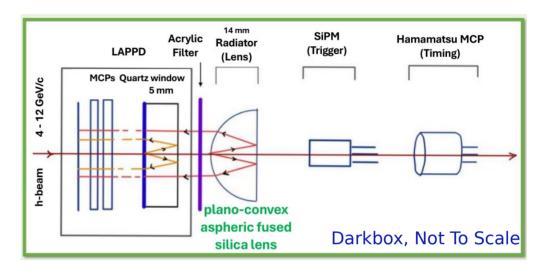


LAPPDs/HRPPDs-MCP technology

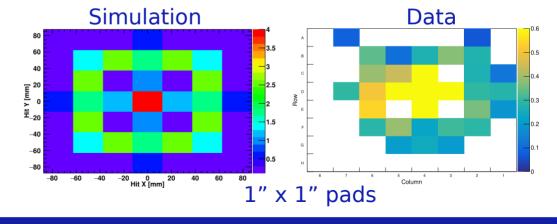

Status and perspectives of MCP-based photodetectors
- Talk by Alexander Kiselev (17/09/2025)

HRPPD (INCOM) 10 x 10 cm²

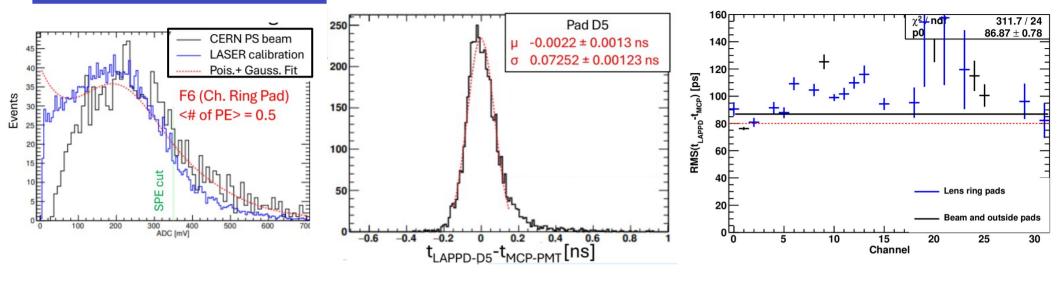




- * High Gain > 10⁶ (~10 kV/cm across each MCP)
- Excellent time resolution (< 100 ps) for SPE
- * High Rate
- Low Dark Count Rates (few kHz/cm²)
- Radiation hard (ALD)
 - ◆ LAPPDs potential first step towards HRPPDs
 - ◆ HRPPD further compact


HRPPDs - optimal timing performances and good tolerance in **B**-fields

LAPPD timing studies (CERN PS T10 beams, 2022)



- Mixed hadron beams (4-12 GeV)
- Cherenkov photons produced in aspheric lens (ratiator) & LAPPD windows
- ◆ SciFi+SiPM as Trigger
- MCP (Hamamatsu) for timing reference
- ◆ CAEN V1742 digitizer module (DAQ)

LAPPD timing studies - results

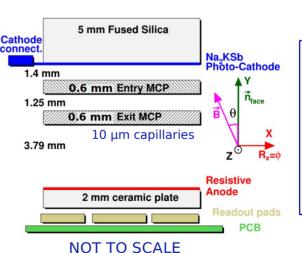
- ◆ 50% peak height as signal arrival time
- ◆ Transit Time Spread (TTS): Sigma of LAPPD signal arrival with respect to MCP signal arrival
- Dependency on pulse height and bias

Average TTS 87 ps

Tests at CERN magnets (2023, 2024)

- Vertical dipole magnets, Current to B-field converter
- Water cooling system, room temperature operation

MNP-17

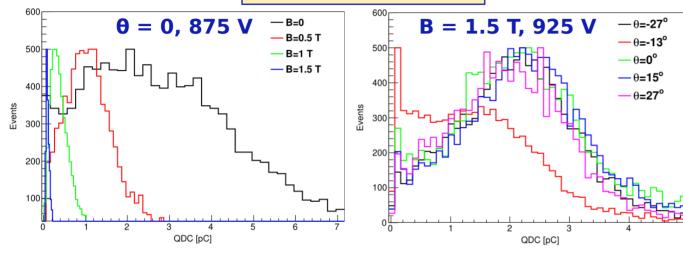

- 0.5 T
- field direction UP
- ◆ 30 cm aperture ~ ±40°

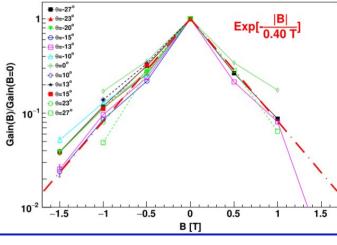
M113

- 1.5 T
- field direction Up & Down
- 17 cm aperture ~ ±27°

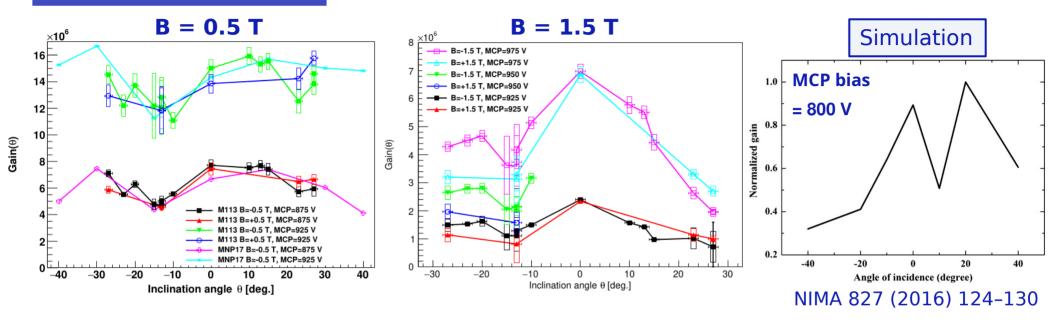
- Inclined Darkbox
- Picoquant pulsed laser (λ =405 nm),
- Laser Sync. out fast trigger for DAQ
- CAEN V1742 digitizer module

θ in Chevron plain


 θ +ve when


B-field along capillaries of **Entry MCP**

Integrated charge distribution and Gain vs. B-fields

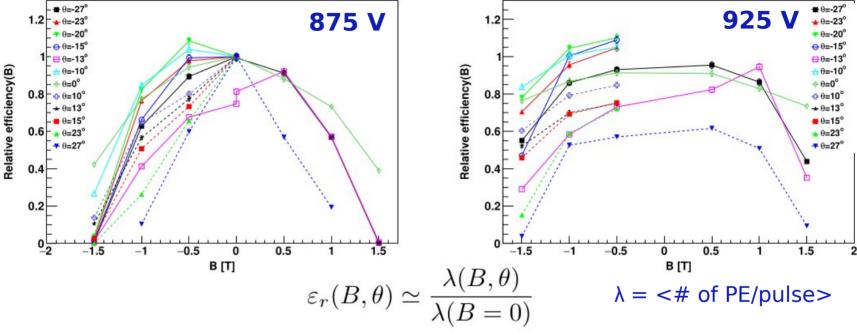


$$Gain(B) = Gain(0) \times e^{-\frac{|B|}{0.40 T}}$$

- Integrated charge on all pads
- SPE peaks (Gain) shift towards zero in **B**-fields, recover with higher bias
- Weak angular dependence except at $\theta = -13^{\circ}$
- One order of magnitude gain drop from 0.5 T to 1.5 T

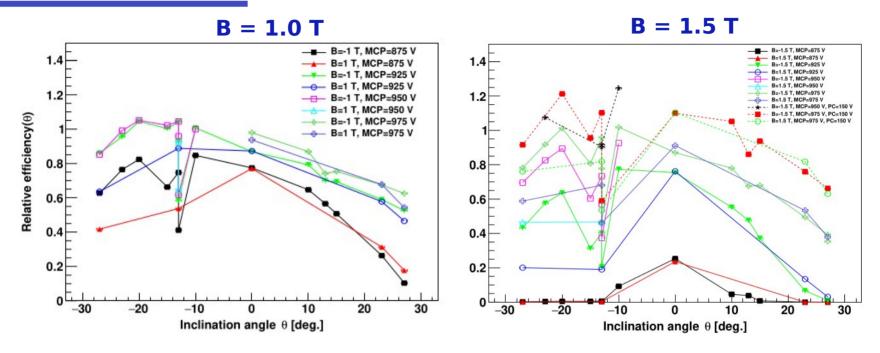
Gain drops exponentially with **B**-field strength

Gain vs. B-field rotation (θ)


- Very small angular dependence at **B** = 0.5 T
- Some dependence at $\theta > 20^{\circ}$ and $\mathbf{B} \ge 1.0 \text{ T}$
- Dips at -130 are observed

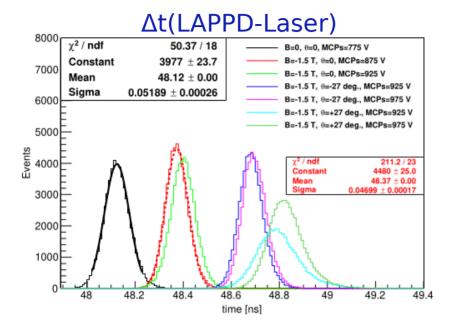
- Simulation with one MCP (of +10°) of 10 μm capillaries for Juno experiment
- ◆ Dip at at +10° is present

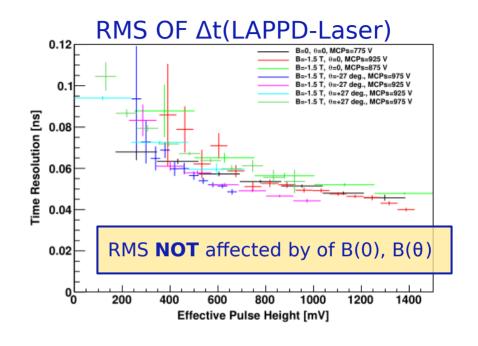
Qualitative agreement between simulation and data (Exit MCP)


Efficiency vs. B-field strength

- ~ 30% suppression of relative efficiency from 0.5 T to 1.0 T@ 875 V
- Strong dependence on MCP bias, gain compensation by 50 V increase across MCPs

Relative efficiency strongly degrades with **B**-field strengths, recovers largely with higher MCP bias

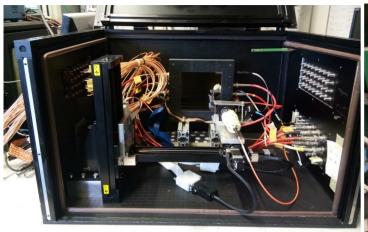

Efficiency vs. B-field rotation (θ)



- Clear dip at -13° for all points in angular distribution
- Higher PC bias (increment by 100 V) recover the efficiency by ~15%

At -13° lower production of secondaries - electrons follow the **B**-field lines and don't hit the capillary walls

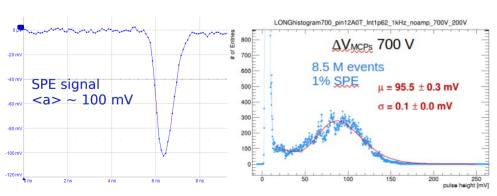
Timing response in B-field

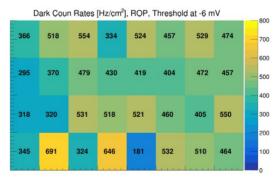


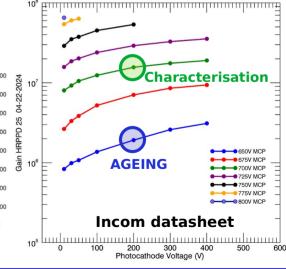
В	θ	Signal delay
1.5 T	00	250 ps
1.5 T	-270	557 ps
1.5 T	+270	665 ps

Measured for few photo-electrons (Not SPE)

B-field introduces delay in LAPPD signals Further delay for inclined **B**-fields (longer paths for e⁻)



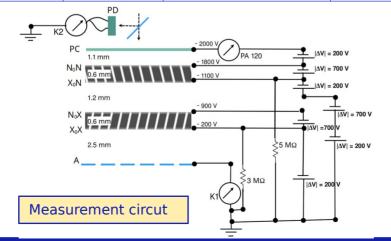

 10 x 10 cm², Two MCPs in a Chevron pair, 10 μm pores

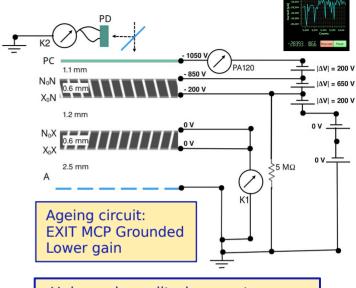

- Direct coupled 1024 Anode pads 3 x 3 mm²
- Gain: 1.5 x 10⁷
 - (@ ROP: 200_700_200_700_200V)
- DCR few kHz @ ROP (TH 4mV)

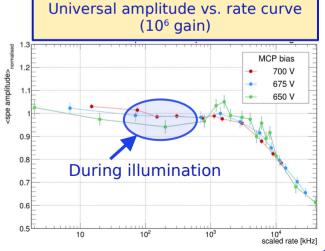
INCOM HRPPD#25 inside DarkBox

HRPPD#25 Backplane

Measurement strategy and protocol

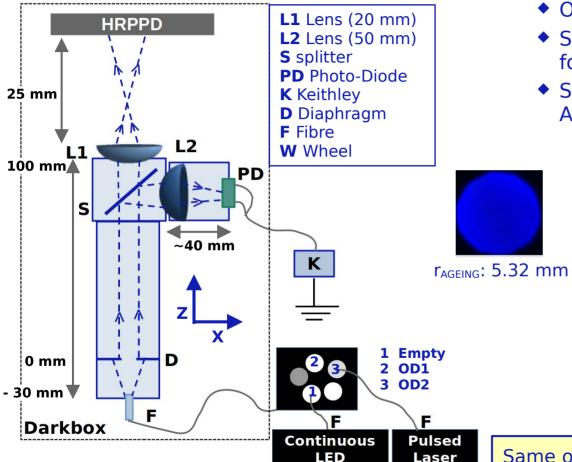



D0	C0	В0	A0
D2			A2
D3			
•			•


 r_{AGEING} : 5.32 mm $r_{FOCUSED}$: <0.5 mm

10¹⁴ photons/cm² in 10 years at ePIC (simulation) 10 years → 10 days in lab (*Accelerated ageing*)

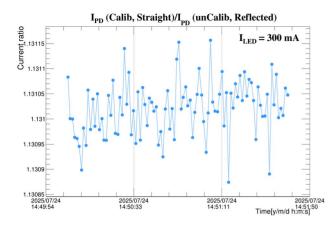
Measurement	HV bias	Light source	Light spot
PDE SCAN	ROP	pulsed Laser, λ=0.20 (OD1)	focused
QE SCAN	-50 V at PC EntryMCP at G	Cont. LED I _{LEDSET} =300 mA	focused
Average QE	-50 V at PC EntryMCP at G	Cont. LED I _{LEDSET} =300 mA	defocused
Gain	ROP	pulsed Laser, λ=0.01 (OD2)	focused
<u>DCR</u>	ROP	X	Х
APR	ROP	pulsed Laser, λ=3	focused

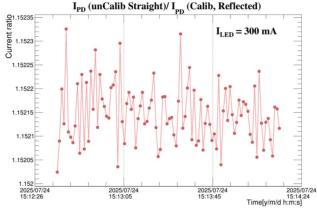


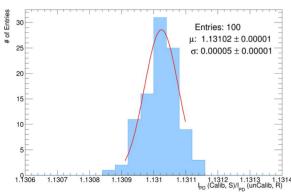
REFERENCE A1T

AGEING D1B

Optics setup

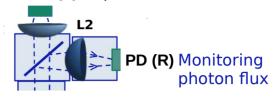



- Optics installed on movable (XYZ) system
- Same optics at two different Z positions focused/ defocused spots
- Same optics at two different X positions -Ageing/Reference region

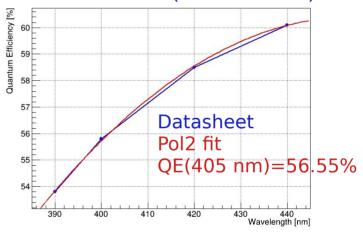

Five optics configurations (405 nm)			
Picoquant Pulsed Laser	Continuous LED (M405F3)		
~1% SPE (λ=0.01), OD2 measurements	Fibre direct QE LED I _{SET} = 300 mA		
~20% SPE (λ=0.2), OD1 measurements	Fibre via 1 AGEING LED I _{SET} = 85 mA		
~3 PE (λ=3) measurements			

Same optics for ageing and intermediate measurements

Photon flux



σ: 0.00007 ± 0.00001 15 10 10 1.0518 1.1519 1.152 1.1521 1.1522 1.1523 1.1524 1.1525 1.1526 1.1


 $SR = sqrt(I1/I2 \times I3/I4)$ = 1.14154 ± 0.00001

CC = sqrt((I1/I2) / (I3/I4))= 0.99079 ± 0.00001

PD (S) In place of HRPPD

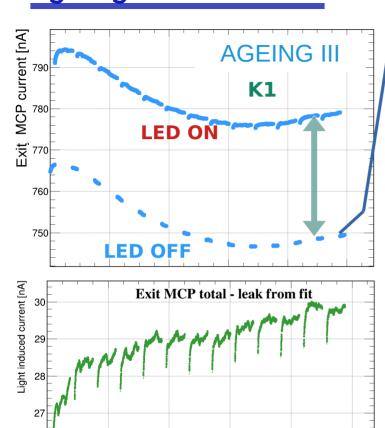
Calibrated PD (HAMAMATSU)

QE (405 nm) of unCalib PD = 0.99079 x 56.55% = 56.03%

Good control of input illumination

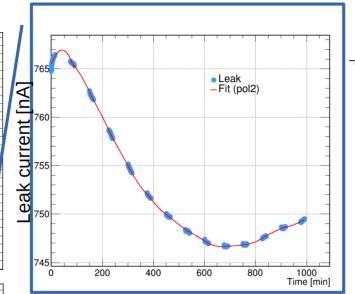
 μ : 1.15215 \pm 0.00001

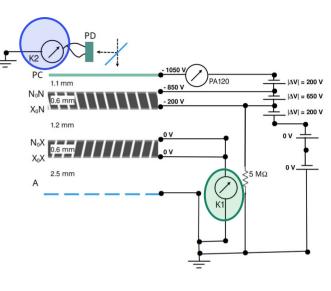
Ageing

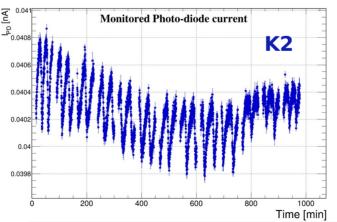

26

25

200

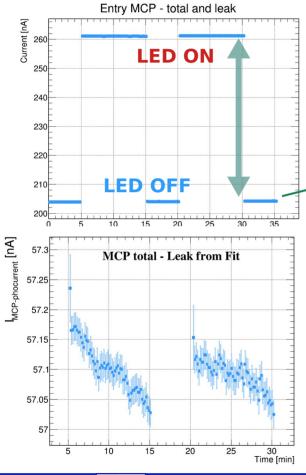

400

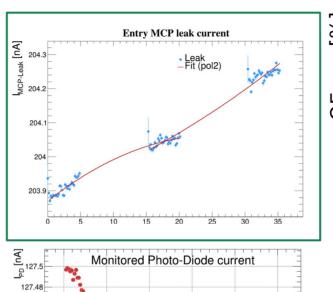

600

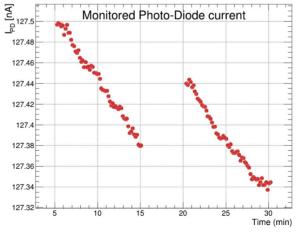


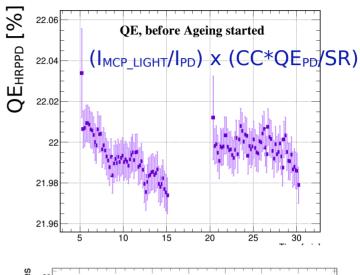
1000 Time [min]

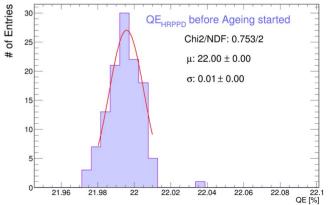
800

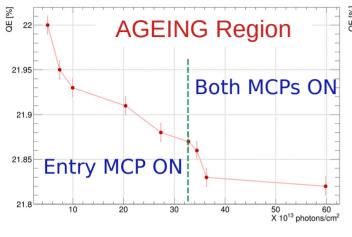




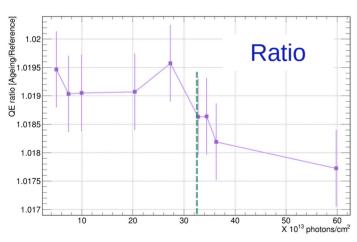

- Ageing tests: (11/08/2025 to 11/09/2025)
- Eight illuminations
- Nine measurements:
 - 1 Before+7 Intermediate +
 - 1 After


Average QE (defocused) - Ageing region - Before Ageing started


50 V @ the PC, rest electrodes are NOT on HV

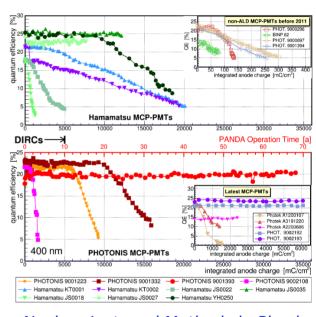






QE average vs. integrated photon fluence

Preliminary Results



8.5 pA in Photo-diode (Reflected position) for 24 hours

→ 1 year equivalent (10¹³ photons/cm²)

Nuclear Inst. and Methods in Physics Research, A 1057 (2023) 168659

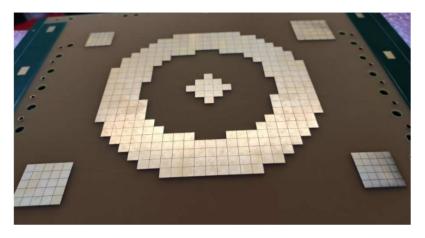
So far, NO evidence of ageing after a photocathode illumination corresponding to 60 years of expected equivalent ePIC run

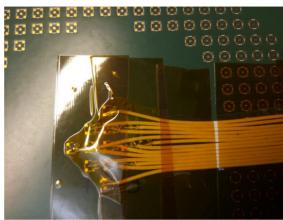
Conclusion

- \bullet SPE timing resolution for a Gen.II LAPPD (20 μ m) was measured (CERN PS) to be ~80 ps.
- Response of an LAPPD (10 μm) in magnetic fields (CERN) was measured:
 - LAPPD gain drops exponentially with B-field strength.
 - Reduction in effective PDE.
 - Both the gain and PDE partially recovered with 50/100 V increase across the two MCPs.
 - ◆ Time delay for normal (~200 ps) and inclined **B**-fields (~500 ps).
- Ageing studies with an HRPPD unit ongoing in Trieste laboratory:
 - * 6 x 10¹⁴ photons/cm² have been illuminated.
 - * First measurements show few ‰ degradation of average QE in 60 years of expected equivalent ePIC run.
 - * Similar effect in reference region NO clear evidence of ageing.

Thank you!

Back up Slides

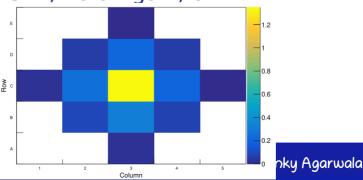


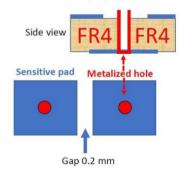

LAPPD #153 MCP features & performance

LAPPD 153 Microchannel Plate (MCP) Features & Performance

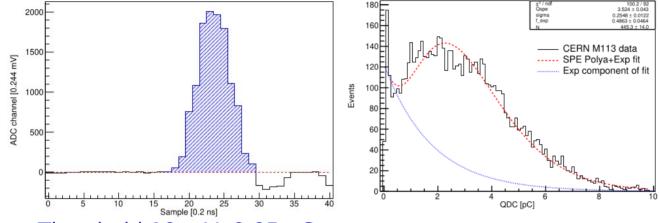
MCPs	Two Arranged in a Chevron Pair	
Dimensions	203 mm x 203 mm X 1.2 mm	
MCP Substrate	Incom C5 Glass	
Capillary Pore Diameter (µm)	10	
Center to Center Pitch (µm)	13	
Channel Length / diameter	60:1	
Substrate Thickness (mm)	0.6	
Bias Angle	13	
Capillary Open Area Ratio	≥65%	
Resistive and Emissive Coatings	Chem 1, Applied via Atomic Layer Deposition (ALD)	
Secondary Emission (SEE) Layer Material	MgO	
Electrode Penetration – Input & Output (Pore Diameter)	0.5-1.0	
MCP ID (Entry / Exit)	CJ19574001-007 / CJ19574001-027	
MCP resistance, Entry/Exit (at LAPPD M&T)	5.5/5.6 MΩ at 900 V	
MCP Dark Rate in the tile	5.7 Hz/cm ² at a threshold of 8x10 ⁵ gain (134 fC), 900	
(Obtained by setting the photocathode more positive than		
the entry MCP)	V/MCP, 10 V positive on photocathode ^A	
May Voltago	900/900 V/MCP (entry/exit), with -2,210 volts on	
Max Voltage	the photocathode; dark rate limited.	

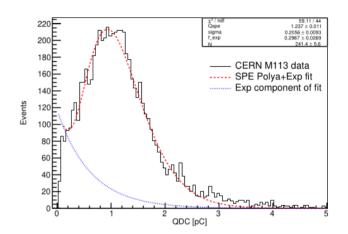
Readout - magnetic field tests





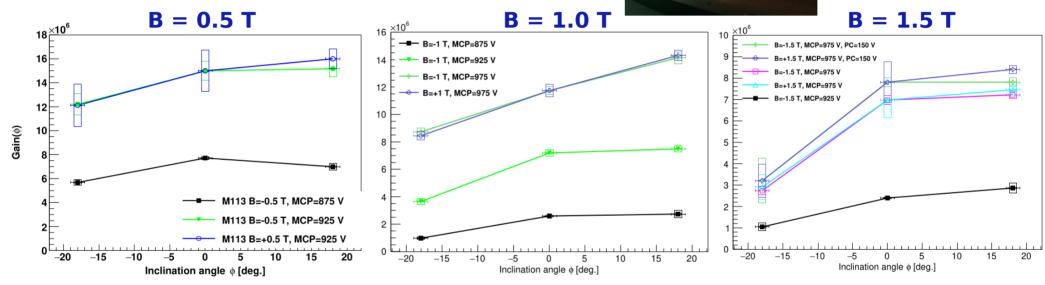
- ◆ LAPPD capacitively coupled with custom-designed (INFN-GE) RO PCB
- Central 13 pads (6 mm x 6 mm)
- Coaxial cables (SMA connector on one side) soldered on the pads
- ◆ Custom-designed (INFN-GE) amplifiers 1 GHz, 20 dB gain, 0.22 mV


noise, <0.2% cross-talk



LAPPD side

Collected charge and gain



Threshold 10 mV, 0.05 pC Red line shows average base line

$$QDC(q, \mu, \sigma) = \frac{1}{\sigma \Gamma(\frac{\mu}{\sigma})} \left(\frac{q}{\sigma}\right)^{\frac{\mu}{\sigma} - 1} e^{-\frac{q}{\sigma}}$$

Gain vs. B-field rotation (ϕ)

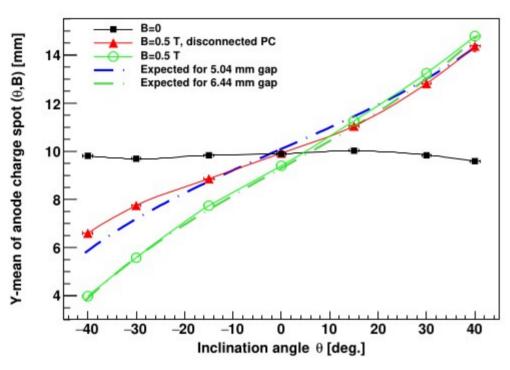
Inclination in transverse plane Out of Chevron plane

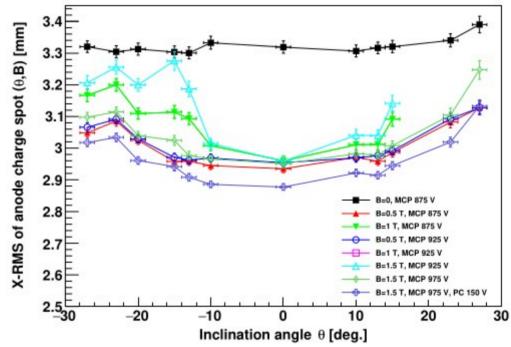
- Non-symmetric behaviour though the LAPPD geometry is symmetric!
- Absolute gain suppression by ~factor 2, at 18° for B = 1.5 T
- Geometrical mismatch between Entry and Exit MCPs??

Studies with HRPPD #25 in M113 magnet at CERN in Oct. 2025

Efficiency definition

$$p(B,\theta) = \frac{N_{coin}(B,\theta)}{N_{trig}(B,\theta)} , \quad p(B=0) \simeq 0.057 \pm 0.0015 .$$
 (3)


From the probability above we can estimate the mean number of PE per laser pulse:


$$\lambda(B,\theta) = -\ln\left[1 - p(B,\theta)\right] \simeq p(B,\theta) . \tag{4}$$

Since the number of observed PE is proportional to the Photon Detection Efficiency (PDE), the relative efficiency of LAPPD in magnetic field can be estimated by:


$$\varepsilon_r(B,\theta) \simeq \frac{\lambda(B,\theta)}{\lambda(B=0)} .$$
(5)

Charge spot position vs. B-field inclination (θ)

One PDE scan - HRPPD ageing studies

