

The ePIC dRICH radiator gas

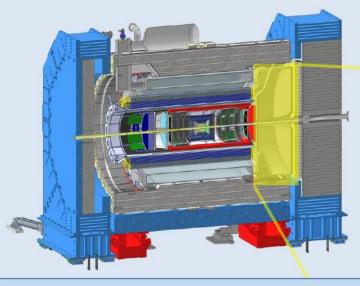
Fulvio Tessarotto (INFN-Trieste)

On behalf of the ePIC dRICH group

ePIC dRICH PID requirements

 C_2F_6 properties: calculations and measurements

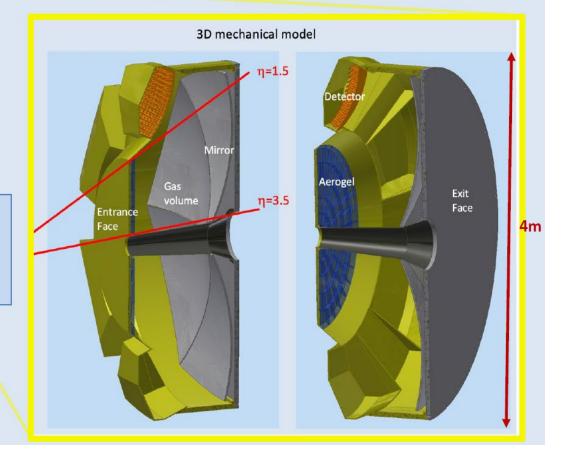
Challenges of ePIC dRICH gas system


Membranes for gas separation

Monitoring tools: Jamin Interferometer

ePIC dRICH requirements

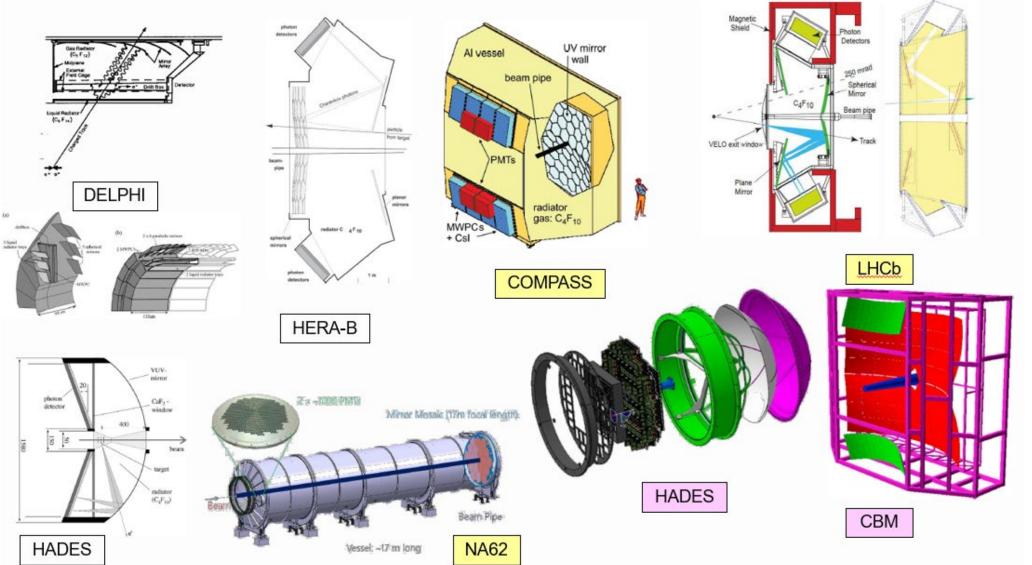
Dual-radiator Ring-imaging Cherenkov Detector (dRICH)


Essential to access flavor information

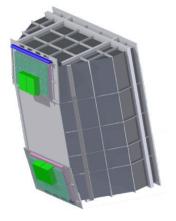
Goals:

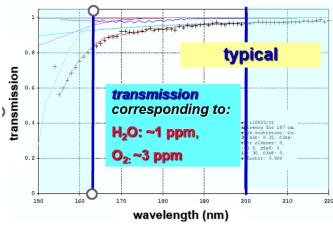
Hadron 3σ–separation between 3 - 50 GeV/c Complement electron ID below 15 GeV/c Cover forward pseudorapidity 1.5 (barrel) - 3.5 (b. pipe)

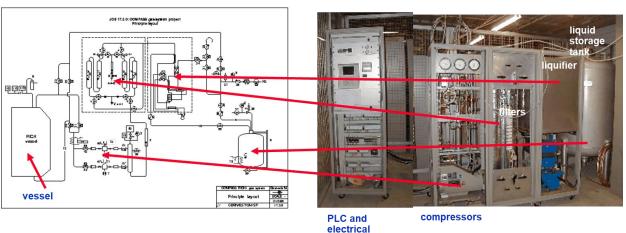
dRICH Features:


Extended 3-50 GeV/c momentum range --> Dual radiator Single-photon detection in high Bfield --> SiPM Limited space --> Compact optics with curved detector

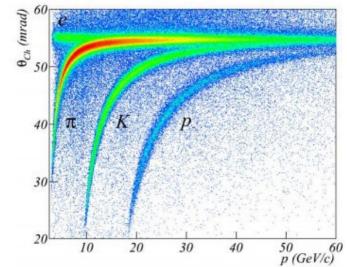
Experience from focusing RICH counters

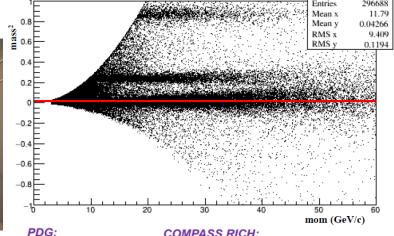



20 years of C_4F_{10} in COMPASS RICH



$$m^{2} = p^{2} \left[\frac{2(n-1) - \theta^{2}}{1 - (n-1)} \right]$$


19/09/2025,

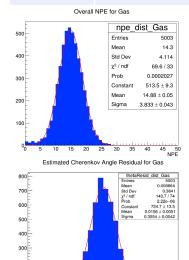


NIM A 553 (2005) 215; NIM A 587 (2008) 371; NIM A 616 (2010) 21; NIM A 631 (2011) 26; NIM A 936 (2019) 416; NIMA 970 (2020) 163768

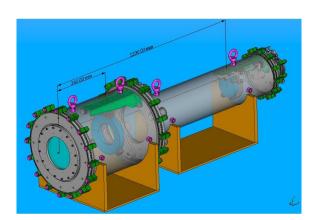
installation

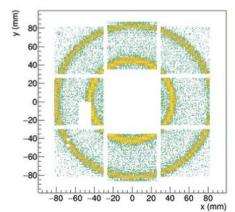
PDG: COMPASS RICH: π mass: 0.13957 GeV/c² π mass: 0.138 GeV/c²

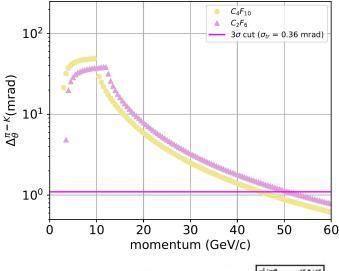
 π mass: 0.13957 GeV/c² π mass: 0.138 GeV/c² = PDG value – ~2 MeV/c² K mass: 0.49368 GeV/c² K mass: 0.490 GeV/c² = PDG value – ~4 MeV/c² P mass: 0.93827 GeV/c² π mass: 0.932 GeV/c² = PDG value – ~6 MeV/c²

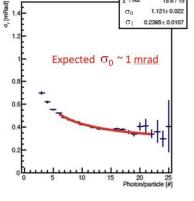

dRICH simulations and test beam: C₂F₆

C_4F_{10} largely proven to perform well. In MC simulations C_2F_6 performs better.

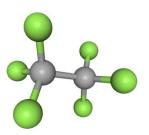

Example: 50 GeV/c π and K shot at η = 3.0

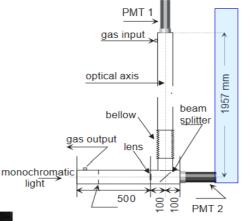

Gas	Npe(π/K)	θ_π	θ_K	σ_π	σ_K	Ν_σ
C_2F_6	14.9/13.8	38.9	37.7	0.36	0.36	3.2
C_4F_{10}	25.0/24.2	51.3	50.4	0.35	0.35	2.6



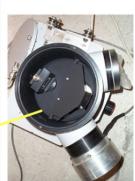

C₂F₆ with SiPM confirmed in test beam

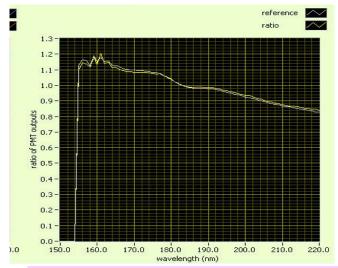
(see talks of Nicola Rubini and Marco Contalbrigo)

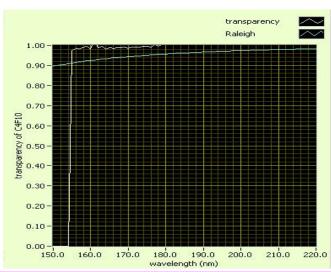

$\rightarrow C_2F_6$ present default choice for ePIC dRICH


19/09/2025,

VUV Trasparency of C₂F₆




Hexafluoroethane 5.0 (CERN) used for a test-beam, stored in a bottle for years


Measured in the COMPASS setup

Deuterium UV lamp, Monochromator system, 1.6 m column for gas transparency measurement

transparency > 98% for 170 nm < λ < 220 nm

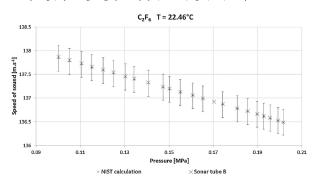
C₂F₆ sonar measurement

Measured speed of sound provides gas density → mixture composition

COMPASS RICH sonar used to verify:

- Agreement with literature data
- Good resolution ($\sim 10^{-4}$)

Measured speed of sound in C_2F_6 : 139.68 m/s


Contents lists available at SciVerse ScienceDirect Fluid Phase Equilibria journal homepage: www.elsevier.com/locate/fluid

Velocity of sound in Perfluoropropane (C_3F_8) , Perfluoroethane (C_2F_6) and their

Václav Vacek*, Michal Vítek, Martin Doubek Czech Technical University in Prague, F. of Mech. Engineering, Department of Physics, Technická 4, Prague 6, 16607, Czech Republic

19/09/2025.

Polaroid Capacitative transducer components

Capacitative 350V activation/ bias → rapid response 37mm diameter determines 50 kHz dominant frequency: can operate over wide pressure range (50mbar →>35 bar...)

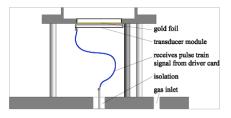
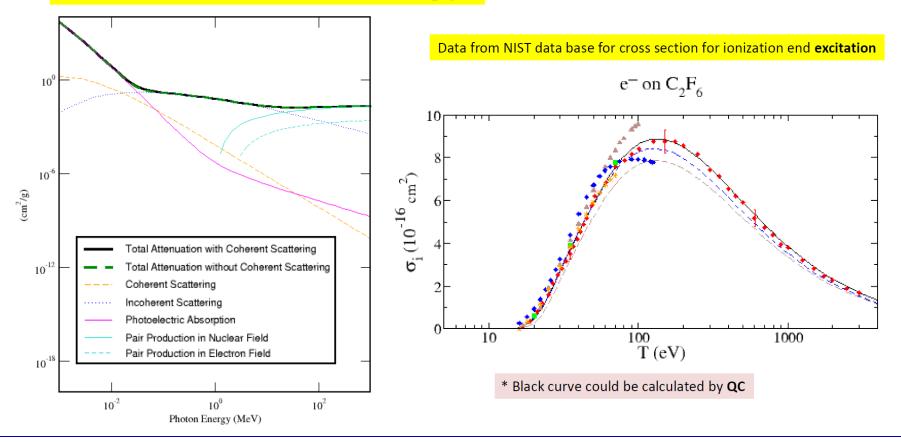


Figure. 1.7 The Sonar System Setup

Figure. 1.6 The Sonar System Setup

Fulvio Tessarotto

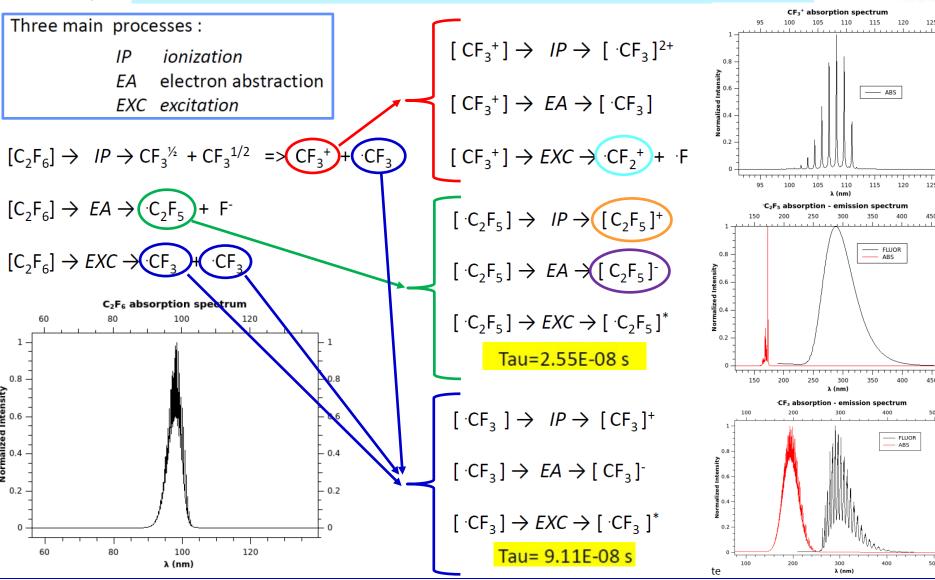
Fig. 5. Measurement in pure C₂F₆ along the 22.46 °C isotherm with varying pressure. Legend: + values calculated from NIST; × values measured in sonar


C₂F₆ chemical computational studies

Dedicated QC calculations for C_2F_6 by Jelena Jovanovic and Nebojsa Begovic group (Institute of General and Physical Chemistry, Belgrade University)

Comparison with NIST XCOM results and experimental data, when available.

Result from XCOM calculation for C₂F₆


C₂F₆ degrades in the interaction

- 0.6

0.4

0.4

$C_2F_5^+$, $C_2F_5^-$, CF_2^+ degradation

$$[C_{2}F_{5}^{+}] \rightarrow IP \rightarrow [C_{2}F_{5}]^{2+} \rightarrow F + C_{2}F_{4}^{2+}$$

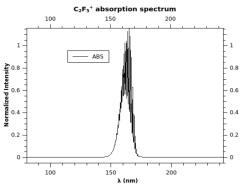
$$[C_{2}F_{5}^{+}] \rightarrow EA \rightarrow [C_{2}F_{5}]$$

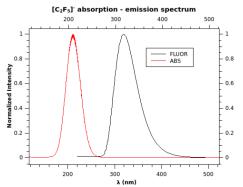
$$[C_{2}F_{5}^{+}] \rightarrow EXC \rightarrow CF_{2} + CF_{3}^{+}$$

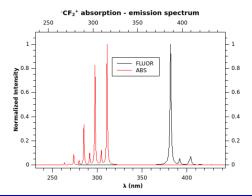
$$[C_{2}F_{5}^{-}] \rightarrow IP \rightarrow [C_{2}F_{5}]$$

$$[C_{2}F_{5}^{-}] \rightarrow EA \rightarrow F + C_{2}F_{4}^{2}$$

$$[C_2F_5^-] \rightarrow EXC \rightarrow [C_2F_5^-]^*$$


Tau = 3.26E-08 s


$$[\,\cdot\mathsf{CF_2}^+\,] \to \ \mathit{IP} \to [\,\mathsf{CF_2}\,]^{2+}$$


$$[\,\cdot \mathsf{CF_2}^+\,] \to \mathit{EA} \to [\,\mathsf{CF_2}\,]$$

$$[\ \cdot\mathsf{CF_2}^+\] \to \mathit{EXC} \to [\ \cdot\mathsf{CF_2}^+\]^*$$

Tau = 2.47E-07 s

Quantum Chemical calculations → full description of the degradation chain.

Optical and chemical properties of all produced molecules, reaction dynamics and lifetimes.

Measurement of transparency and fluorescence under irradiation is foreseen.

EU Directive on fluorinated gases

Document 32024R0573

Regulation (EU) 2024/573 of the European Parliament and of the Council of 7 February 2024 on fluorinated greenhouse gases amending Directive (EU) 2019/1937 and repealing Regulation (EU) No 517/2014 (Text with EEA relevance)

PE/60/2023/REV/1

https://eur-lex.europa.eu/eli/rea/2024/573/oi

FUR-Lex Access to European Union law Fluorinated gases intensively used in industry:

- refrigeration & air conditioning
- power distribution
- automotive
- medical inhalers
- semiconductor and electronics

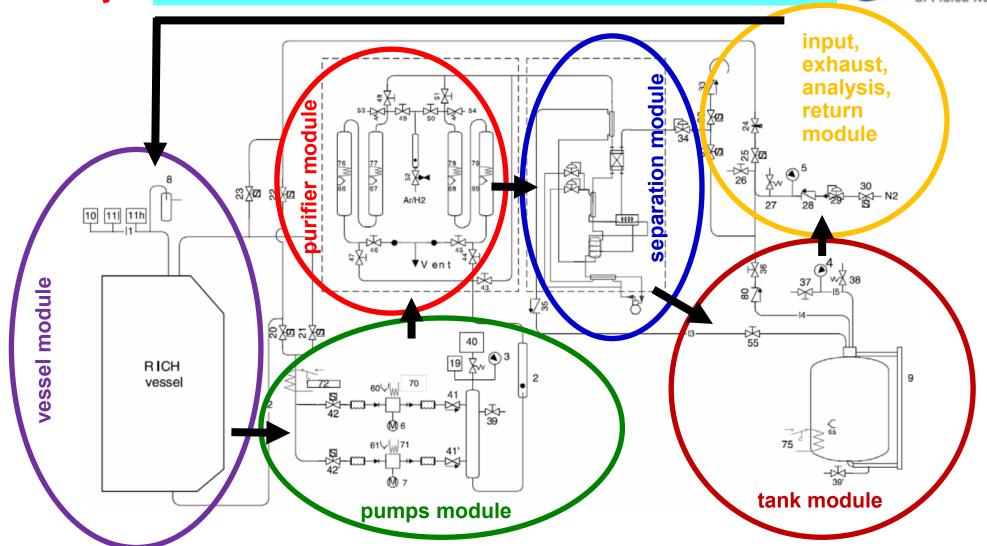
In some cases, not replaceable: > exemptions from banning rules?

	Substance		GWP	GWP
Industrial designation	Chemical name (Common name)	Chemical formula	100 (4)	20 (4)
Section 2: Perfluorocarl	oons (PFCs)		·	
PFC-14	tetrafluoromethane (perfluoromethane, carbon tetrafluoride)	CF ₄	7 380	5 300
PFC-116	Hexafluoroethane (perfluoroethane)	C_2F_6	12 400	8 940
PFC-218	octafluoropropane (perfluoropropane)	C ₃ F ₈	9 290	6 770
PFC-3-1-10 (R-31-10)	decafluorobutane (perfluorobutane)	C ₄ F ₁₀	10 000	7 300
PFC-4-1-12 (R-41-12)	dodecafluoropentane (perfluoropentane)	C ₅ F ₁₂	9 220	6 680
		1		

Ecofriendly use of hexafluoroethane:

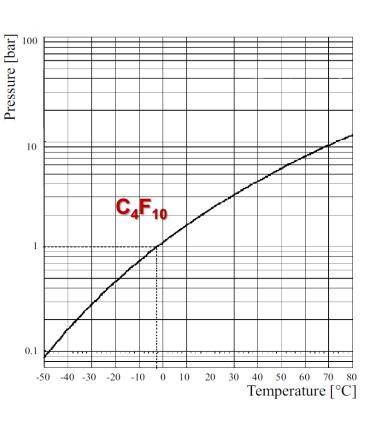
19/09/2025.

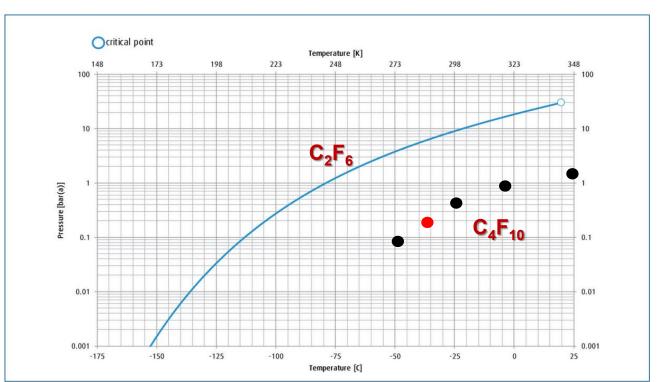
- No emission for precleaning → purchasing of clean gas.
- Minimization of leaks during operation → good vessel tightness, high quality components of gas system.
- No venting out of radiator gas used for measurements \rightarrow challenging but possible.
- Minimal purge of trapped fluorocarbons in oxy- and hydro- filters. → feasible.
- Fully closed loop for filling and recovery → specific R&D ongoing.


Alternative gases (see Greg Hallewell talk) and pressurized radiator option → R&D DRD1, DRD4, Otello

11

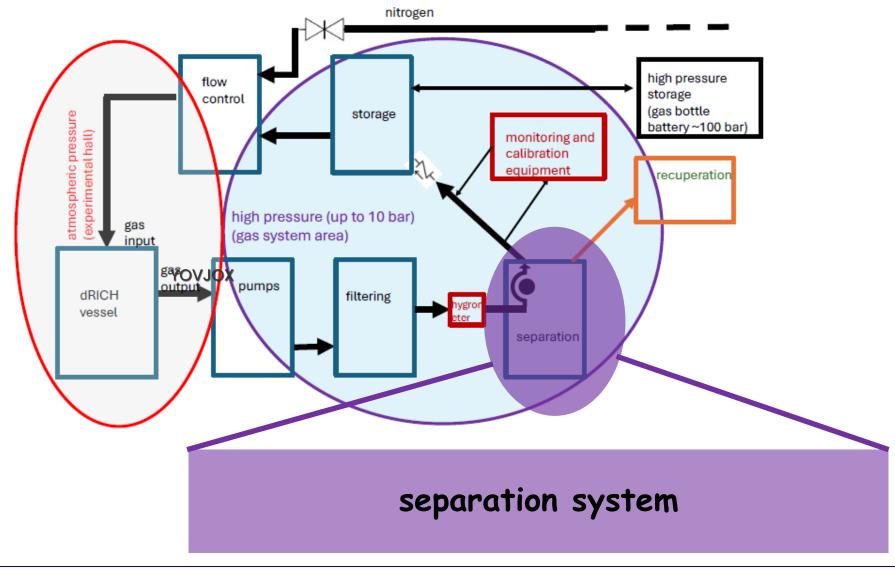
COMPASS RICH gas system





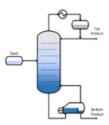
Challenges of ecofriendly gas system

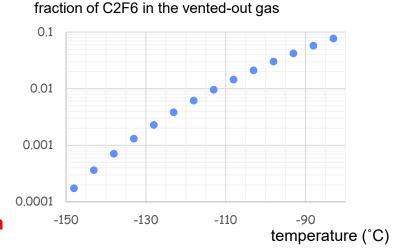
The partial pressures of C_2F_6 and C_4F_{10} are very different

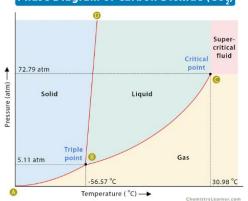

At - 36°C C₄F₁₀ has 200 hPa vapor pressure. A separator working at 7 bars will purge 97% N₂ and 3% C₄F₁₀

To achieve analogous performance with C₂F₆ is challenging

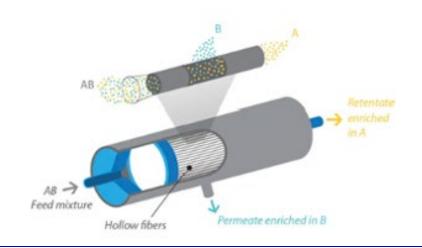
Block diagram of the dRICH gas system


19/09/2025,


Separation possibilities


Phase separation by liquefying the radiator gas Distillation → implies operating at very low temperatures

2) Phase separation by liquefying the other gas → implies using CO₂ as neutral gas instead of nitrogen



Phase Diagram of Carbon Dioxide (CO₂)

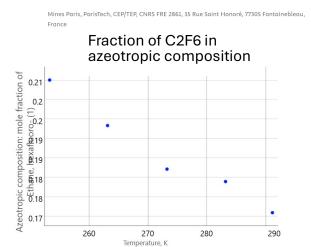
C₂F₆-CO₂ mixture and phase separation options: partial condensation, distillation column, crystallization, ...

3) Separation by membrane filtering implies developing a dedicated system

Separation of C₂F₆ from CO₂

Preliminary Studies: CO₂ – C₂F₆ Binary Mixture

Investigation performed by Damiano Galassi, chemical and process Engineer, EP-DT-FS Gas team, CERN



Fluid Phase Equilibria
Volume 258, Issue 2, 15 September 2007, Pages 179-185

Vapor-liquid equilibrium data for the hexafluoroethane+carbon dioxide system at temperatures from 253 to 297K and pressures up to 6.5 MPa

Alain Valtz, Christophe Coquelet ♀ ☒ , Dominique Richon

azeotropic→strong molecular interaction

VLE data at 227 K

VLE data at 253 K

Experimental

NRTL-R

PSRK
RRMATIAS-COPEMAN

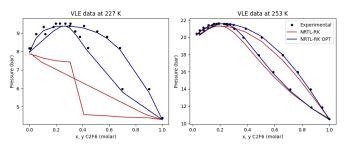
(a)

110

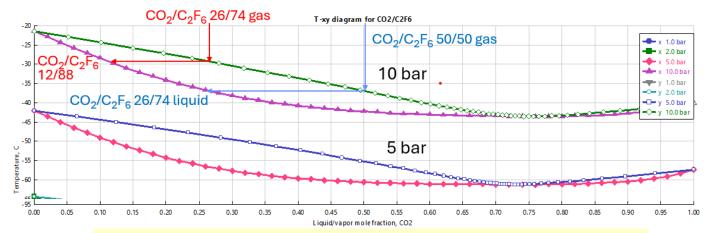
00

02

04


06

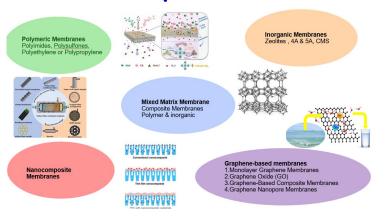
08

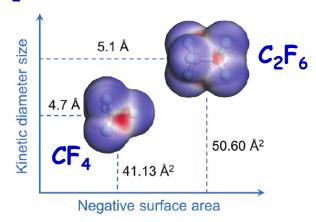

10

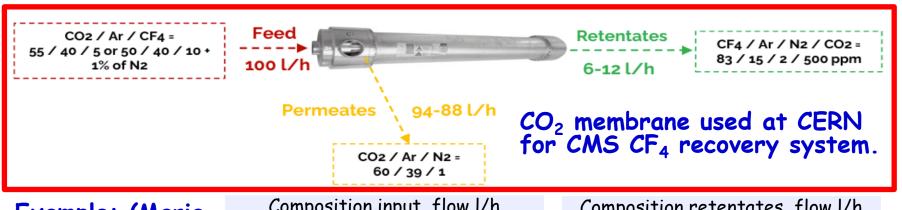
X, y C2F6 (molar)

Models do not reproduce the data

Blue: D. Galassi modified model: o.k.


Possibility to use a distillation column for separation


Selective permeability for CO2


Selective permeabilities

CO₂ kinetic diameter: 3.3 Å

Maria Cristina Arena presentation at DRD1 Workshop "Sustainable gas mixtures for future detectors"

Example:	(Maria
Cristina A	Irena,
EP-DT)	•

Со	mpositi	on input	flow	/h	Comp	osition	retenta	ites flo	w I/h
CF4	CO2	Ar	02	N2	CF4	CO2	Ar	02	N2
21	214	157	0.6	7.920	15	0.006	1	0.001	0.1

UBE membranes

Module Structure - CO₂ Separator

History of UBE's Membrane Business

Jointed MITI's C1 Project (National Project)

Field Tests at Ammonia Plant for H2 Recovery

Started R&D Work

First Membrane for H₂

Organized Membrane Dept.

3rd Hollow Fiber Line in Ube.

4th Hollow Fiber Line in Ube.

Supply First H₂ Recovery Unit

First Membranes for CO₂ & Dryer

First Membrane for Dehydration

First Membrane for N₂/O₂ Separation

Improving Membranes and Modules

2nd Hollow Fiber Line in Ube City facility Module Assembly Line in Sakai.

Expansion in the Module Assembly facility in Sakai.

CS-001E_REV.K_250717

· 1978

· 1981 · 1983

· 1985

· 1986

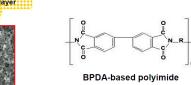
· 1989

· 1989

· 1992

2007

2008


2025

Polyimide Hollow Fiber Membranes

200 to 500 µm in outer diameter of	Skin layer of 100 nm		Porous layer		
fiber			V		
Nooc					

Permeation rate to gases in polyimide

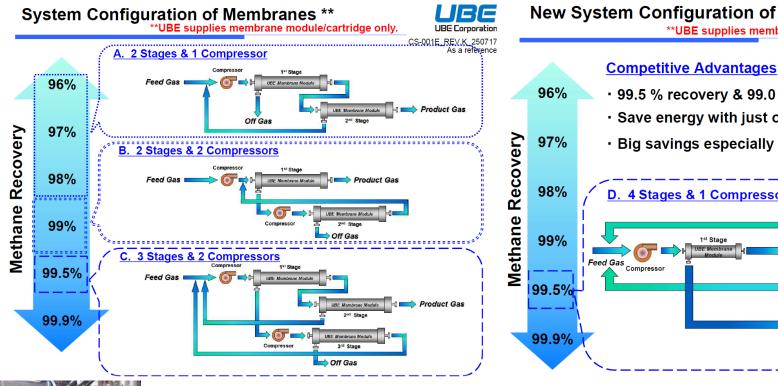

Benefits of BPDA-based polyimide as material for hollow fiber membrane

H₂O High permeation CO2 H₂S dependent on solubility and 0, molecule size CO Ar **Equilibrium** + Kinetic Separ. C₂H₆ Low C₃+ Hydrocarbons

membrane

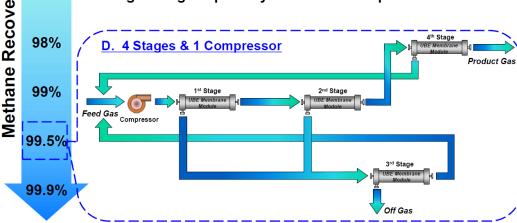
N₂ CH₄ C₂H₅OH

- 1) Good balance for permeability and selectivity
- 2) Good mechanical property
- 3) Excellent heat resistance
- 4) Good chemical resistance
- 5) Excellent lifetime
- 6) Easy to make fiber and thin skin layer


Product Specification and Features

Hollow Fiber	Polyimide Resin	
Housing	Aluminum	
Operating Pressure	Housing type - Max. 1.4 MPaG Cartridge type - Max. 2.4 MPaG	
Operation Temperature	up to 60°C	
H₂S resistance up to 3 vol %		

Biogas applications

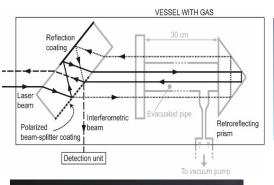


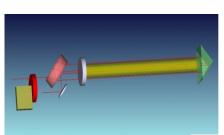
**UBE supplies membrane module/cartridge only.

- 99.5 % recovery & 99.0 % purity CH₄, all in one go.
- Save energy with just one compressor.
- Big savings especially for small scale plants.

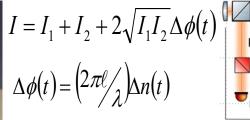
Mainz,

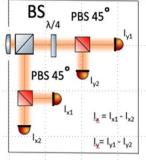
Feed Gas Flow Rate : 600 Nm³/h (at 0 °C, 1013 mbara)

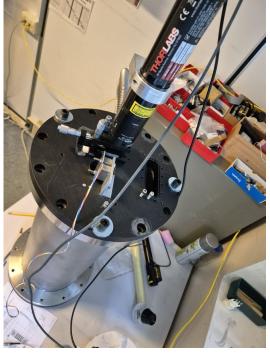

Feed Gas Composition : CO₂ 40 %, CH₄ 60 % Operating Temperature: 25 °C (77 °F)*

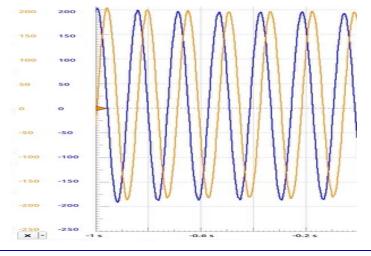

Product Gas Purity : CO₂ < 1 % *Maximum allowable temperature is 60 °C (140 °F).

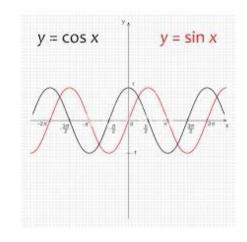
Modified Jamin interferometer

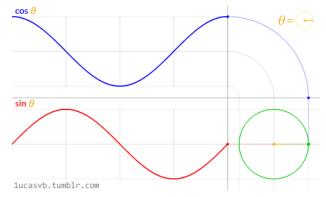












Interferometer resolution

one period (360°) corrisponds to a variation of 1 ppm in the refractive index. a resolution better than 10 ppb can be achieved in refractive index monitoring.

19/09/2025,

CONCLUSIONS

- ePIC dRICH preferred radiator gas: C₂F₆
 - Preliminary measurements and tests are being performed
 - Quantum chemical calculations ongoing
- Ecofriendly gas system presents challenges
 - Separation techniques under investigation
 - Selective permeability membranes look promising
- Radiator gas monitoring tools being developed
 - Jamin interferometer offers high precision refractive index measurement