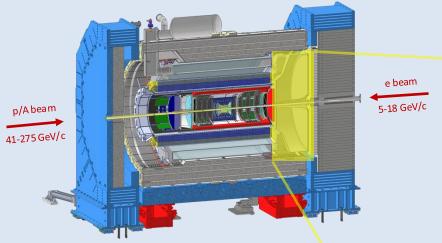

The ePIC Dual-Radiator RICH Detector

Electron Direction

1.7T Superconducting Solenoid

AC-LGAD TOF

DITRIESTE

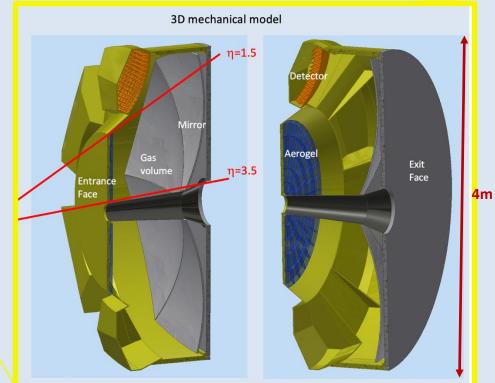

Forward Calorimetry

(EM and Hadronic)

M. Contalbrigo – INFN Ferrara

RICH 2025, Mainz, September 15th - 19th, 2025

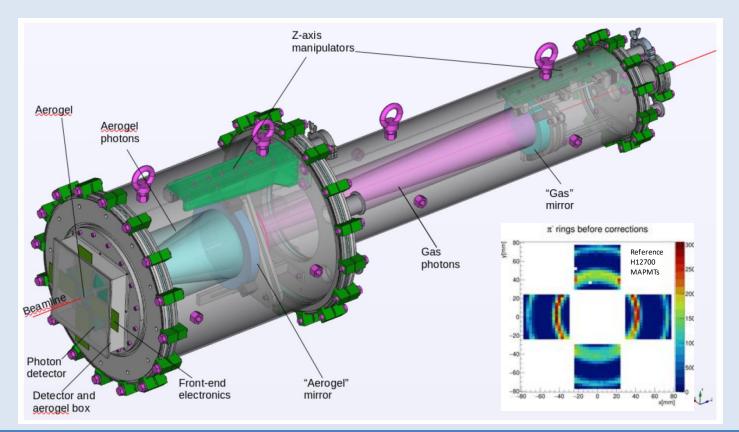
ePIC dRICH


Dual-radiator Ring-imaging Cherenkov Detector (dRICH) Essential to access flavor information

Goals:

Hadron 3σ —separation between 3 - 50 GeV/c Complement electron ID below 15 GeV/c Cover forward pseudorapidity 1.5 (barrel) - 3.5 (b. pipe)

dRICH Features:


Extended 3-50 GeV/c momentum range --> Dual radiator Single-photon detection in high Bfield --> SiPM Limited space --> Compact optics with curved detector

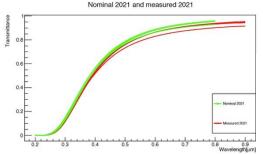
Design Status

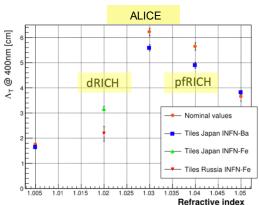
	Technical requirements			Baseline technical solutions	Ongoing
Aerogel:	Momentum reach above 15 GeV/c to overlap with gas More than 10 detected photons from 4 cm thickness Single photon resolution approaching 2 mrad	\Rightarrow		n = 1.026 $dn/d\lambda = 6 \ 10^{-6} \ nm^{-1}$ scattering length > 50 mm	Dimensions
Gas:	Momentum reach above 50 GeV/c at pseudorapidity > 2.5 More than 20 detected photons from 1 m depth Single photon resolution approaching 1 mrad		C ₂ F ₆	with n = 1.00086 $dn/d\lambda = 0.2 \cdot 10^{-6} \text{ nm}^{-1}$ absorption length > 100 m	Purging
Mirror:	Focalization of Cherenkov light onto the detector surface Preservation of the Cherenkov information Material budget limited to O(2 %) of radiation length			Carbon fiber material Roughness of few nm Angular precision < 0.3 mrad	Coating
Sensors:	Single photon detection capability in highly non-uniform magnetic field Excellent PDE in the visible range to cope with aerogel Marginal contribution to the angular resolution Preserve prompt Cherenkov information Tolerance to few 10 ¹⁰ 1-MeV neutron equivalent fluence		SiPM	Spatial resolution of 3 x 3 mm ² Time resolution O(100 ps) Operation at < -30 degrees Annealing curing cycles	Layout Annealing
Readout:	Below 1 p.e. signal threshold capability Preserve sensor time resolution to cope with dark counts and accidentals More than 300 kHz/ch rate capability Streaming readout with suppression of no-interaction frames		ALCOR	ALCOR chip (ToT architecture) Time resolution < 200 ps Rate > 300 kHz/ch	ALCOR 64ch RDO
Mechanics:	Acceptance maximized in 1.5 – 3.5 pseudorapidity range Material budget minimized in acceptance Compatibility with barrel maintenance at IP6			Composite materials Single open volume Detector in the barrel shadow	Real-scale prototype Cooling

On axis optics to minimize the active area, single or double radiator imaging Vacuum technology & recovery system for efficient gas exchange

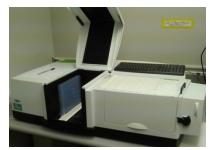
1st chamber

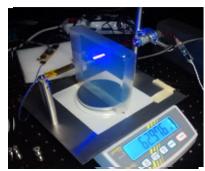
Gas recovery system

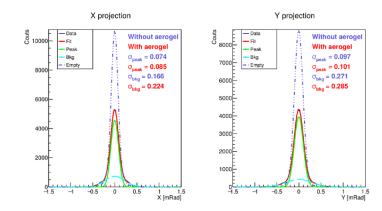


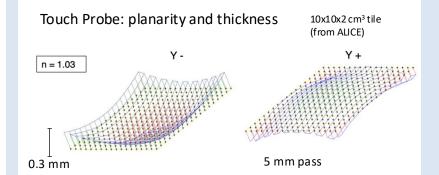

Aerogel Radiator

Aerogel Factory (BELLE-II)

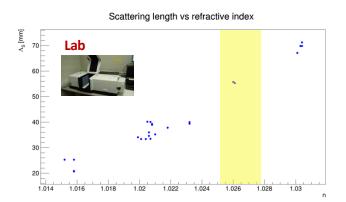

Initial evaluation & Reproducibility on small samples in sinergy with ALICE

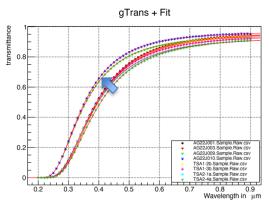

Transmittance & Transflectance





Laser spot broadening with 3 x 2 cm aerogel

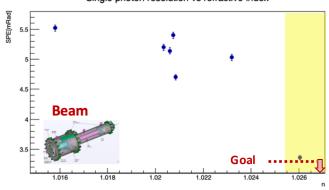


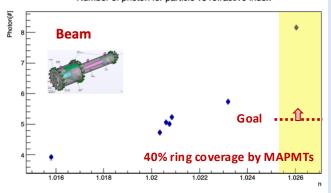

G. Volpe (poster)

Aerogel Technical Performance

Aerogel with n=1.026 validated with lab and prototype tests

- * meet SPE resolution expectations
- * scattering length > 50 mm
- * match with TOF end point (2.5 GeV/c)
- * overlap with gas (> 12 GeV/c)
- * photon yield > 10 per particle with MAPMTs




Various samples from Aerogel Factory

Single photon resolution vs refractive index

Number of photon for particle vs refractive index

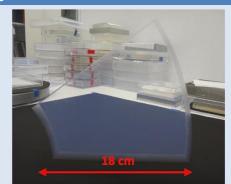
Aerogel Pre-Production

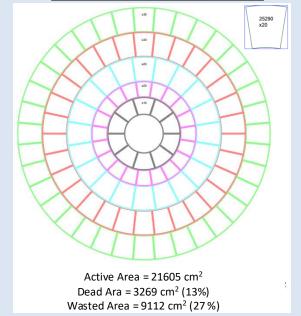
First large aerogel tile demonstrators delivered

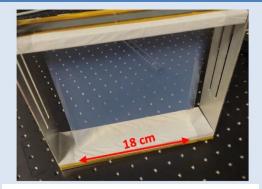
based on dRICH baseline specifications

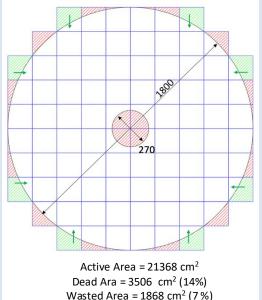
An effort should be pursued by the vendor to keep the aerogel quality parameters as close as possible or better than the following reference values.

General specifications:

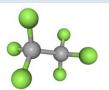

- No cracks or bubbles inside the block. Single spallings which decrease its area no more than 0.25 % are acceptable on the top surface;
- Lateral dimension tolerance within 0.25 mm;
- No evident disuniformity inside the tile volume.


Technical specifications:


- Refractive index, to be chosen by the customer, in the range from 1.025 to 1.030, with a maximum tileto-tile variation of +/-0.002:
- Tolerance on thickness +/- 1 mm, being the error intended as the maximum tile-to-tile variation;
- Absorption coefficient, defined as the constant term of the Hunt parameterization of the aerogel transmission, bigger than 0.95;
- Scattering length wavelength bigger than 45 mm at 400 nm;
- Planarity of the transmission surface, defined as the maximum peak to valley variation, does not exceed
 1.5 % of the lateral dimensions.


Engineering of the aerogel wall expected by 2026

- * optimize area vs number of tiles
- * minimize the waste of material
- * minimize the dead/low-efficiency gaps
- * optimize thickness:
 - photon yield vs resolution
 - planarity



Gas Radiator Technical Performance

Baseline Hexsafluoroethane validated with lab and beam tests

C₂F₆ molecular weight: 138.01 g/mol

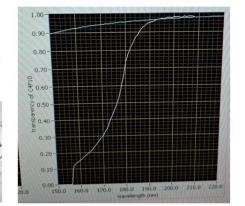

boiling point: -78.1 °C melting point: -100.6 °C

density: 5.734 kg/m³ at 24 °C density: 16.08 kg/m³ at -78 °C

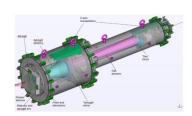
1 covalent + 6 hydrogen bonds

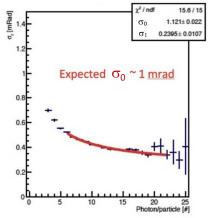
Gas	Npe(π/K)	θ_π	θ_К	σ_π	σ_K	Ν_σ	$\rho = \Delta\theta/\theta$ ($\lambda = 300$ nm)
C ₂ F ₆	16.0/14.9	36.8	35.7	0.32	0.33	3.5	1.8 %
C ₄ F ₁₀	24.8/23.8	48.6	47.8	0.29	0.30	2.8	2.4 %

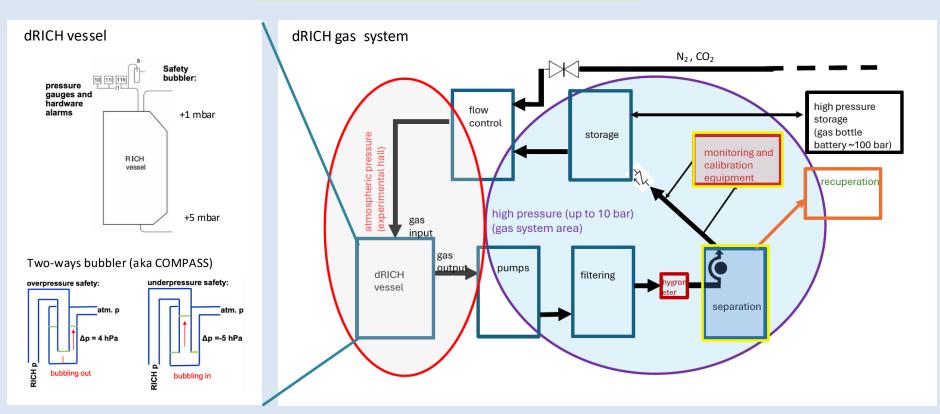
Measured 139.7 m/s speed of sound confirms negligible contaminants after few year in bottle



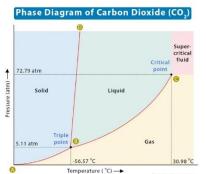
Transmission in UV range > 98 %

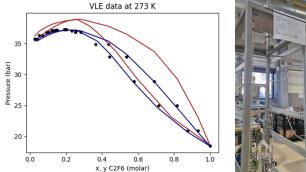



Deuterium UV lamp, Monochromator system, 1.6 m column for gas transparency measurement


Expected performance obtained with dRICH prototype

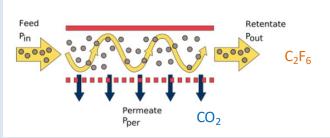
Gas System & Monitoring

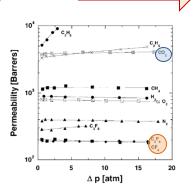

Adaptation from realizations at CERN with focus on separation/monitor expected by 2026 Realization at BNL in compliance with DOE safety standards



Development of gas separation protocols expected by 2026

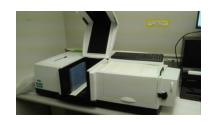
Purging via liquefaction of stand-by gas

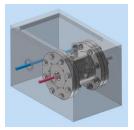

Updated vapor-liquid equilibrium C₂F₆-CO₂ model, test in preparation at CERN



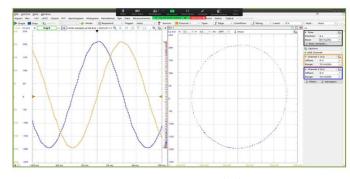
Purging via membranes

Effective separation of CF₄ and CO₂ demostrated in LHCb hpps://edms.cern.ch/document/2816490/1





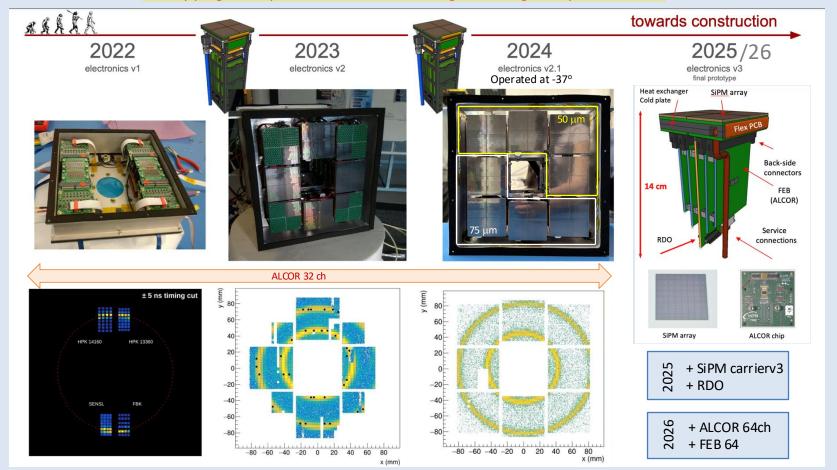
Design of online purity monitors expected by 2026


Sonar to measure speed of sound

10 bar chamber + specrophotometer to measure light transmission in the visible range

Jamin interferometer for precise n determination

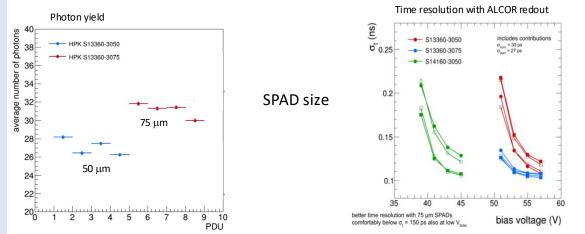
Nominal sensitivity down to 10 ppm of refractive index

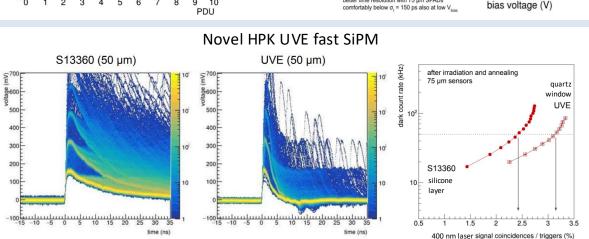

F. Tessarotto (talk)

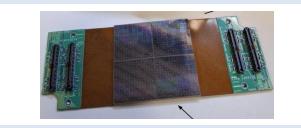
Design Status

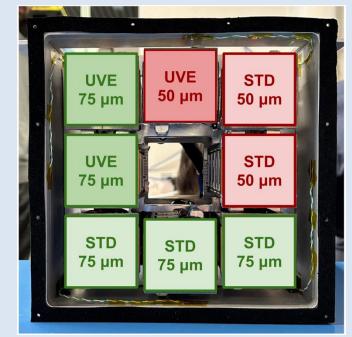
	Technical requirements			Baseline technical solutions		Ongoing
Aerogel:	Momentum reach above 15 GeV/c to overlap with gas More than 10 detected photons from 4 cm thickness Single photon resolution approaching 2 mrad			n = 1.026 $dn/d\lambda = 6 \ 10^{-6} \ nm^{-1}$ scattering length > 50 mm		Dimensions
Gas:	Momentum reach above 50 GeV/c at pseudorapidity > 2.5 More than 20 detected photons from 1 m depth Single photon resolution approaching 1 mrad		C ₂ F ₆	with n = 1.00086 $dn/d\lambda = 0.2 \cdot 10^{-6} \text{ nm}^{-1}$ absorption length > 100 m		Purging
Mirror:	Focalization of Cherenkov light onto the detector surface Preservation of the Cherenkov information Material budget limited to O(2 %) of radiation length			Carbon fiber material Roughness of few nm Angular precision < 0.3 mrad		Coating
Sensors:	Single photon detection capability in highly non-uniform magnetic field Excellent PDE in the visible range to cope with aerogel Marginal contribution to the angular resolution Preserve prompt Cherenkov information Tolerance to few 10 ¹⁰ 1-MeV neutron equivalent fluence	ightharpoonup	SiPM	Spatial resolution of 3 x 3 mm ² Time resolution O(100 ps) Operation at < -30 degrees Annealing curing cycles	ightharpoonup	Layout Annealing
Readout:	Below 1 p.e. signal threshold capability Preserve sensor time resolution to cope with dark counts and accidentals More than 300 kHz/ch rate capability Streaming readout with suppression of no-interaction frames		ALCOR	ALCOR chip (ToT architecture) Time resolution < 200 ps Rate > 300 kHz/ch		ALCOR 64ch RDO
Mechanics:	Acceptance maximized in 1.5 – 3.5 pseudorapidity range Material budget minimized in acceptance Compatibility with barrel maintenance at IP6			Composite materials Single open volume Detector in the barrel shadow		Real-scale prototype Cooling

Photon Detector

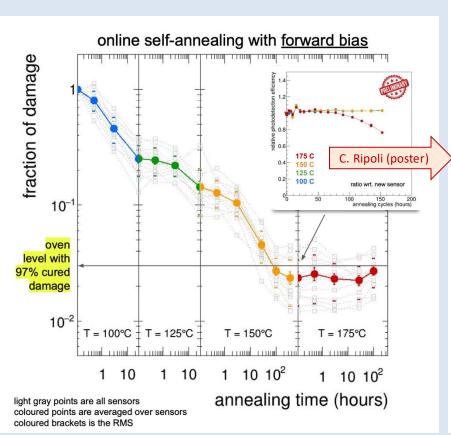

Steadly progress of photodetector towards integrated design completion in 2026

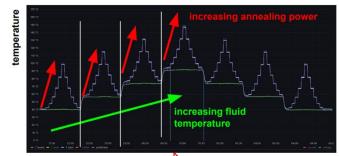



M. Contalbrigo


Sensor Layout Engineering

Baseline specs defined, finalization of the engineering of the SiPM optimized layout ongoing

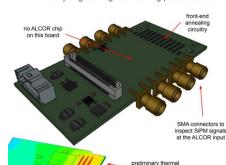




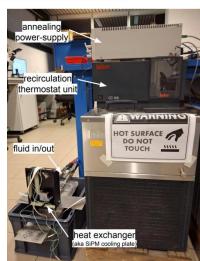
Annealing Engineering

Completion of engineering of the SiPM optimized layout and temperature treatments expected by 2026

Details of in-situ annealing protocol based on Joule-effect

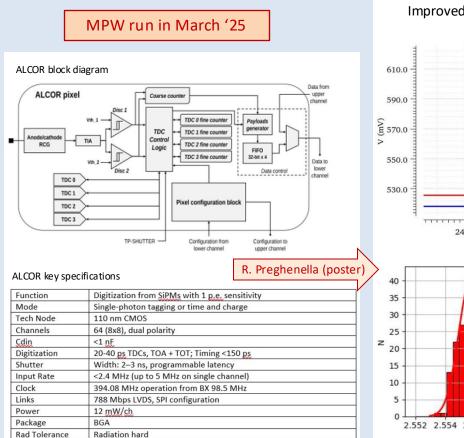

N. Rubini (talk)

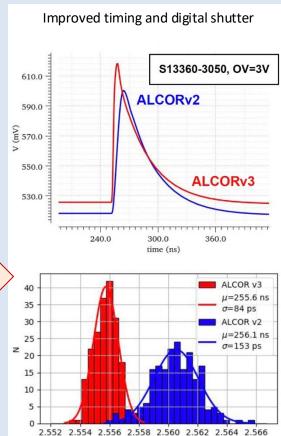
- like a final FEB with all annealing circuitry
- SMA connectors to inspect SiPM signals on scope

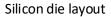

goals

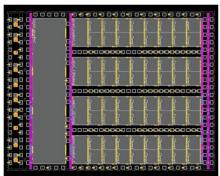
features

- test realistic dRICH annealing electronics
- study/engineering of annealing process details

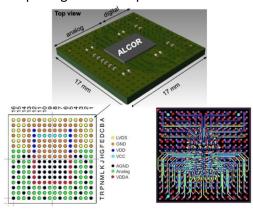



simulations (T_{ambient} = 60 C)

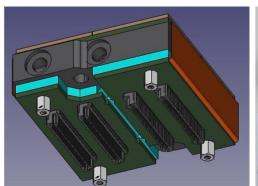


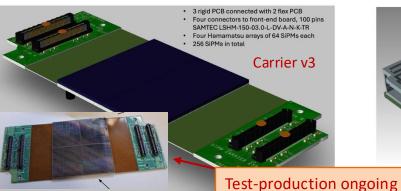

ALCOR Readout Chip

ALCOR spces defined with years of lab + beam tests with the 32 channel version - ALCORv64 pilot production ongoing



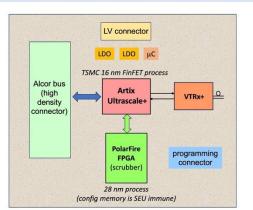
Compact ball-grid array (BGA) package with interposer

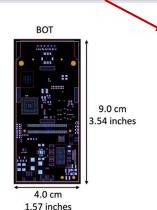

Timestamp [s]


1e-7

Readout Electronic

Design of the readout electronics in the "final" ePIC layout version is ready for test production.


Proton irradiation campaigns for ALCOR-32 and key RDO components showed SEU rate is within the expected manageable levels A working DAQ scheme has been identified to support ML online data filtering at sub-detector level against pure dark-count event



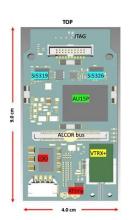
Front-End Board (FEB)

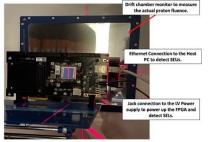
Readout Irradiation Tests

Singe-event upset (SEU) rate of dRICH electronics is manageable with standard firmware redundancy and resets features

Regular irradiation campaign ongoing:

Neutron irradiation campaign at LNL-CN (9-11 October 24)


Gamma irradiation campaign at CERN-GIF (14-16 October 24)


Proton irradiation campaign at TIFPA (12-14 December 24) $TID_5 \cong 2.3 \text{ krad}$ (for 1000 fb⁻¹)

ALCOR radiation tolerance

RDO radiation tolerance

Measured

Mean SEU time @ ePIC

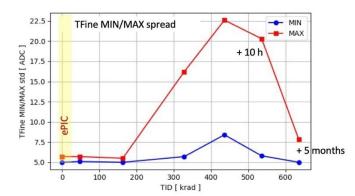
Si5326 (clock)

 $\sigma_{\text{SEU}} = (3.89 \pm 0.54) \cdot 10^{-14} \frac{\text{cm}^2}{\text{bit}}$

4 h

3.8 h

Attiny (power)


 $\sigma_{\text{SEU}} = (2.11 \pm 0.50) \cdot 10^{-14} \frac{\text{cm}^2}{\text{bit}}$

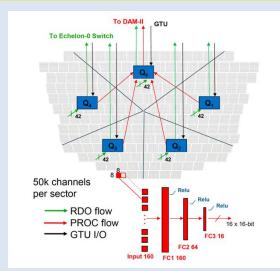
AU15P (FPGA)

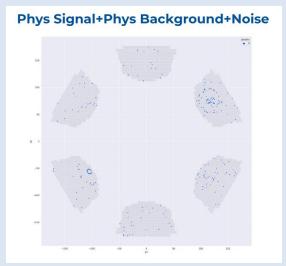
 $\sigma_{SEU} \left(\frac{\text{cm}^2}{\text{bit}} \right)$ Our estimates $(1.78 \pm 0.23) \cdot 10^{-15}$ BRAM $(2.30 \pm 0.28) \cdot 10^{-16}$

2 min

- **ECCR**
- $\sigma = 9.8 \cdot 10^{-14} \text{ cm}^2/\text{bit}$
- $\sigma = 6.1 \cdot 10^{-14} \text{ cm}^2/\text{bit}$
- BCR PCR no SEU detected
- periphery register → no TMR in ALCOR v2.1 periphery register → no TMR in ALCOR v2.1
 - re-written every 10 seconds to mimick TMR

dRICH Online Filtering

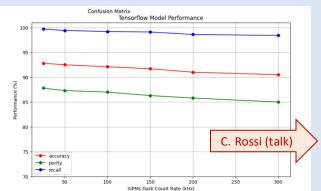

A working DAQ scheme has been identified to support ML online data filtering at sub-detector level against (1:5) pure dark-count event


Scheme based on ePIC DAM (Felix) & APEIRON communication network (INFN) sub-sector integrated analysis detector integrated analysis DAM GTU Input 6 x 5 x 16 Sector 0 100 GbE GTU (..., dIT) Q_{00} TP Sector 5 GTU 100 GbE GTU (trigger to DAM) GTU 100 GbĘ To Echelon-0 Switch GTU 42 100 GbE GTU

100 GbE

100 GbE

 Q_{53}



Promising preliminary tests

→Through quantization, we defined: quantized fixed point<16,6> inputs quantized fixed point<8,1> weights quantized fixed point<8,1> biases

@ 100 kHz & 10 ns:

- Accuracy = (TP+TN)/(TP+TN+FP+FN) =
 0.906
- □ Purity = TP/(TP+FP) = 0.858
- □ Recall = TP/(TP+FN) = 0.977

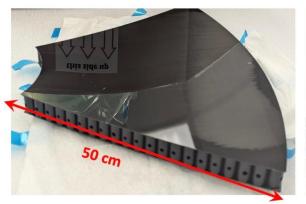
GTU

Design Status

	Technical requirements			Baseline technical solutions	Ongoing
Aerogel:	Momentum reach above 15 GeV/c to overlap with gas More than 10 detected photons from 4 cm thickness Single photon resolution approaching 2 mrad			n = 1.026 $dn/d\lambda = 6 \cdot 10^{-6} \text{ nm}^{-1}$ scattering length > 50 mm	Dimensions
Gas:	Momentum reach above 50 GeV/c at pseudorapidity > 2.5 More than 20 detected photons from 1 m depth Single photon resolution approaching 1 mrad		C ₂ F ₆	with n = 1.00086 $dn/d\lambda = 0.2 \cdot 10^{-6} \text{ nm}^{-1}$ absorption length > 100 m	Purging
Mirror:	Focalization of Cherenkov light onto the detector surface Preservation of the Cherenkov information Material budget limited to O(2 %) of radiation length	\Rightarrow		Carbon fiber material Roughness of few nm Angular precision < 0.3 mrad	Coating
Sensors:	Single photon detection capability in highly non-uniform magnetic field Excellent PDE in the visible range to cope with aerogel Marginal contribution to the angular resolution Preserve prompt Cherenkov information Tolerance to few 10 ¹⁰ 1-MeV neutron equivalent fluence	\Box	SiPM	Spatial resolution of 3 x 3 mm ² Time resolution O(100 ps) Operation at < -30 degrees Annealing curing cycles	Layout Annealing
Readout:	Below 1 p.e. signal threshold capability Preserve sensor time resolution to cope with dark counts and accidentals More than 300 kHz/ch rate capability Streaming readout with suppression of no-interaction frames		ALCOR	ALCOR chip (ToT architecture) Time resolution < 200 ps Rate > 300 kHz/ch	ALCOR 64ch RDO
Mechanics:	Acceptance maximized in 1.5 – 3.5 pseudorapidity range Material budget minimized in acceptance Compatibility with barrel maintenance at IP6			Composite materials Single open volume Detector in the barrel shadow	Real-scale prototype Cooling

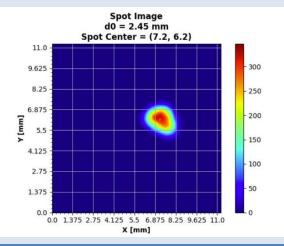
Mirror Technical Performance

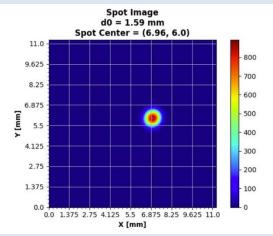
CFRP substrate mid-size (~50 cm side) demonstrator validated with lab tests before coating

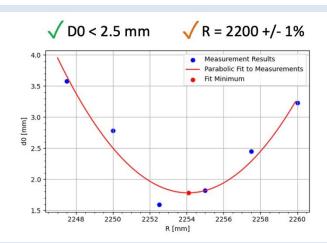

Annex C. Technical Requisite

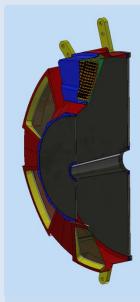
Each spherical mirror is supplied with

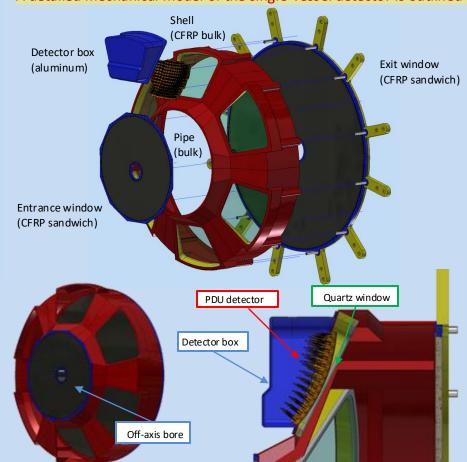
- a spot-size measurement,
- a report on dimensions,
- no reflective coating.


The spherical mirrors are replicated from the same mandrel. The latter is realized with the novel cost-effective technology that reduces the mandrel total mass and cost. Each mirror fulfills the following optical quality specification:


- Radius within 1% of nominal RoC value (the nominal RoC values is defined by the customer before production in the range 2000 mm +/- 10%).
- Roughness < 2 nm,
- Pointlike image spot size D0 < 2.5 mm,
- Compatibility with fluorocarbon gases (C2F6),
- Compatibility with SiO₂ reflecting coating.





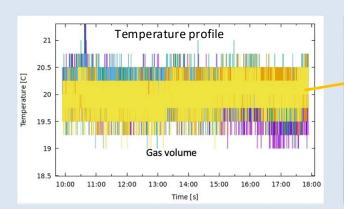

General Layout

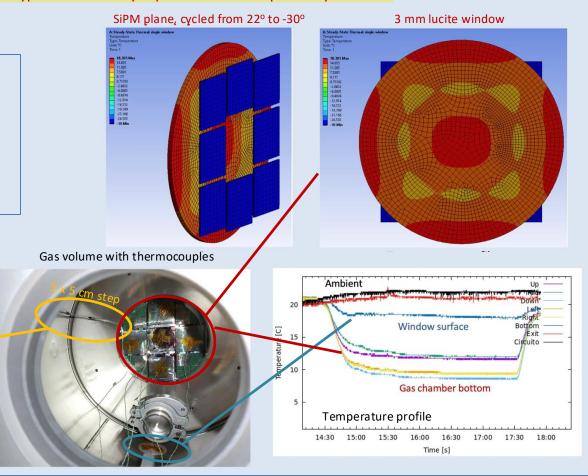
A detailed mechanical model of the single-vessel detector is outlined with composite materials

Composite materials

Total wieght: ~ 2 ton

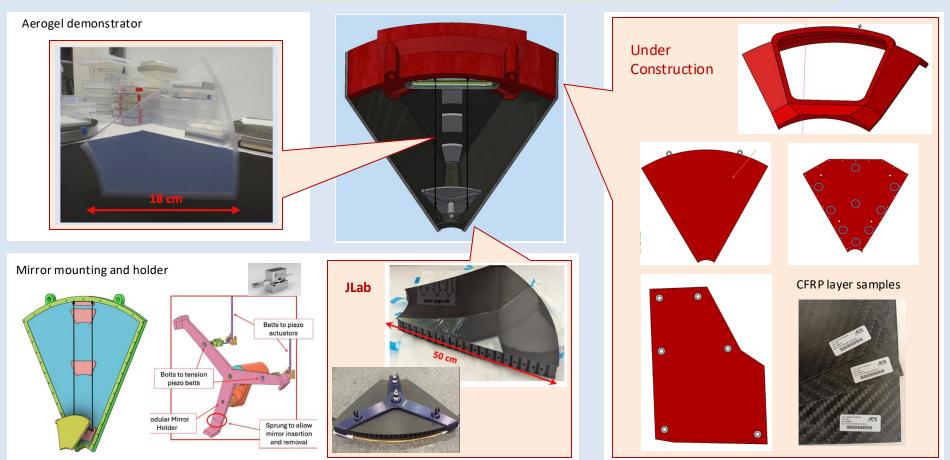
On-site maintenance access without breaking the beam vacuum


Quartz Window


Ongoing comparative simulation vs prototype thermal study expected to be completed by mid 2026

Ongoing study with ANSYS workbench simulations
Benchmarked by dRICH prototype

Gradients are largely mitigated by


- double lucite window (with air gap) x 0.5
- 8 mm thick quartz window
- inner gas recirculation x 0.1

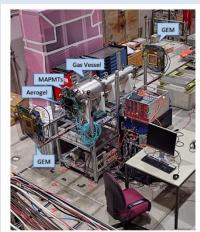
Real Scale Prototype

Engineering of all the mechanical details pursued with the real-scale prototype now expected by mid-October

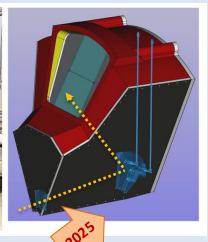
Test Beams

Previous validations:

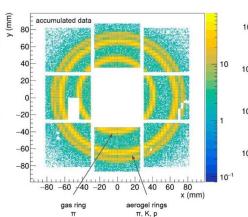
Dual-radiator concept C_2F_6 radiator gas performance Aerogel rafractive index SiPM-ALCOR readout chain EIC-drive readout plane Induced temperature gradients

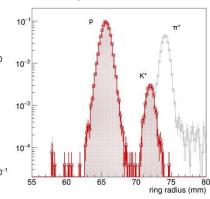

2025 main goals:

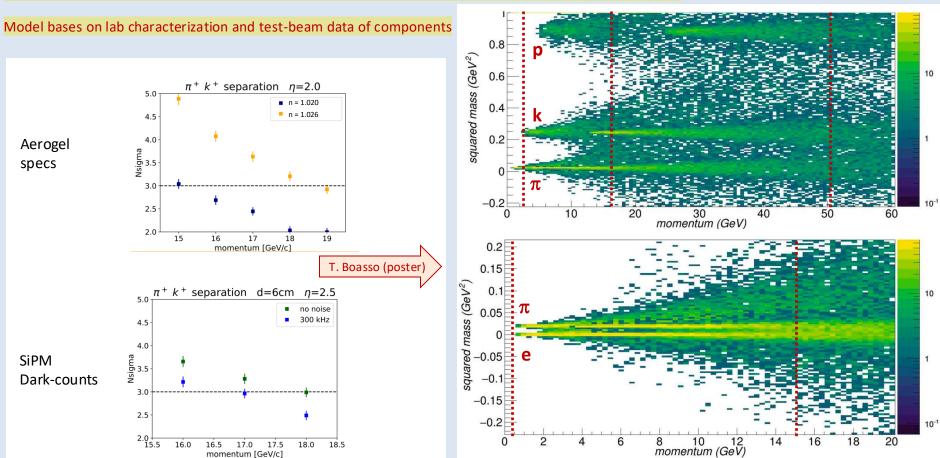
UVE Sensors


ALCOR readout with RDO


Real scale 1-sector prototype with demo components


Slot at SPS H8 in November





dRICH Performance Study

Simulation within ePIC dd4hep framework accounts for tracking, material budget and magnetic bending.

Conclusions

dRICH aims for a compact and cost-effective solution for forward PID at ePIC

hadron identification in the 2.5 GeV/c – 50 GeV/c momentum range

electron identification fom few hundred of MeV/c up to ~15 GeV/c

Design Status is being documented in the ePIC pre-TDR under preparation

dRICH passed 60% Preliminary Design Review on April 1-2, 2025

Essential technical performance has been validated for each dRICH component

Engineering is ongoing with pre-productions for performance vs cost optimization

Workforce is increasing, with focus in simulations and engineering

Ultimate R&D achievements expected in 2025 (real-scale prototype, RDO, ALCOR64)

Moving from R&D to engineering phase