RICH 2025

15-19 September, 2025 Mainz, Germany

spadRICH: Developing Digital Analog SiPMs as Candidate Photodetectors for Future RICH Detectors

R. Dolenec^{1,2,*}, C. Bruschini^{3,*}, E. Charbon³, D. Consuegra Rodríguez¹, F. Gramuglia³, W.Y. Ha³, U. Karaca³, P. Križan^{1,2}, S. Korpar^{1,4}, R. Pestotnik¹, P. Singh³, G.G.Taylor³, A. Seljak¹, M.L. Wu³

¹Experimental particle physics department, Jožef Stefan Institute (JSI), Ljubljana, Slovenia; ²University of Ljubljana, Faculty of Mathematics and Physics, Ljubljana, Slovenia; ³AQUA Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), Neuchâtel, Switzerland; ⁴University of Maribor, Faculty of Chemistry and Chemical Engineering, Maribor, Slovenia

* rok.dolenec@ijs.si, claudio.bruschini@epfl.ch

Motivation

Next generation of Particle physics experiments

- Increase in luminosity
- → Increase in background radiation
- → Upgrade of sub-detectors necessary

Ring Imaging Cherenkov Detectors (RICH)

- Critical sub-detector for particle identification
- LHCb [1], Belle II [2], ALICE 3 RICH [3]
- High requirements for photodetector performance

Silicon Photomultiplier (SiPM)

- Photodetector candidate for RICH upgrades
- Single-photon avalanche diode (SPAD) based photosensor
- Current limitation: neutron radiation hardness

LHCb RICH1

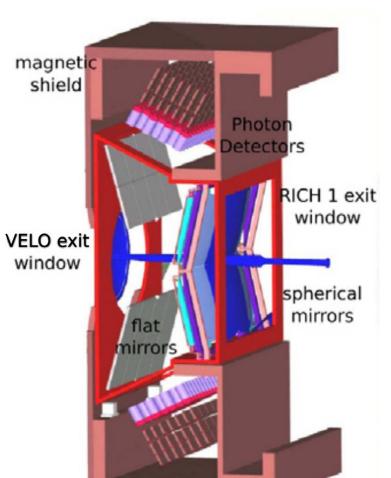
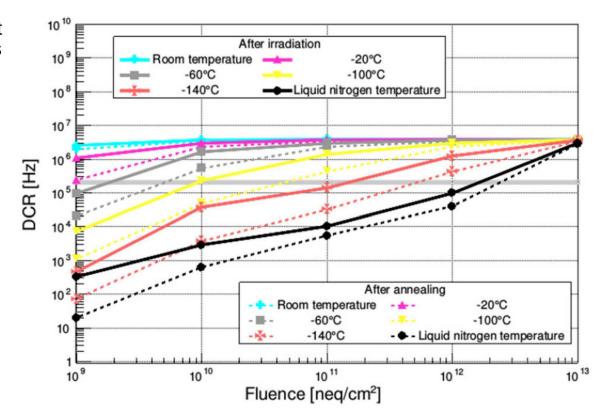


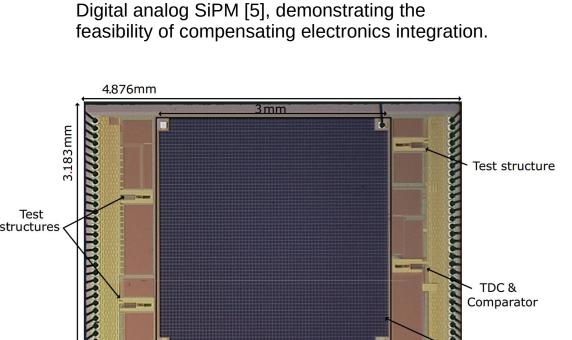
Image credit [2]


LHCb RICH Upgrade II photodetector requirements

Radiation hardness	2 x 10 ¹³ 1-Mev neutron equivalent/cm ² 12 kGy TID 1 x 10 ¹³ HEH (>20 MeV)/cm ²	
Maximum occupancy	30% 1-photon hit probability / mm² /25 ns	
Timing	100 ps FWHM SPTR few ns gate / 25 ns (40 MHz bunch-crossing)	
Granularity	~ 1.4x1.4 mm ²	
Total area	1.5 m ² (RICH1, 2 m ² RICH2)	
PDE	50% @ 400 nm	
DCR	~ 100 kcps – 1 Mcps/mm ²	

Cryogenic opearation

- Neutron irradiation → defects in SPAD → increase in dark count rate (DCR)
- Cooling reduces DCR
- After 10¹³ n_{eg}/cm² cooling close to liquid nitrogen may be necessary [4]


and with annealing (24h @ 80°C) [4]:



spadRICH Project

Develop radiation-hard photosensor optimized for RICH application

Based on SiPMs including reconfigurable electronics → digital analog SiPM

Radiation hardness achieved by means of:

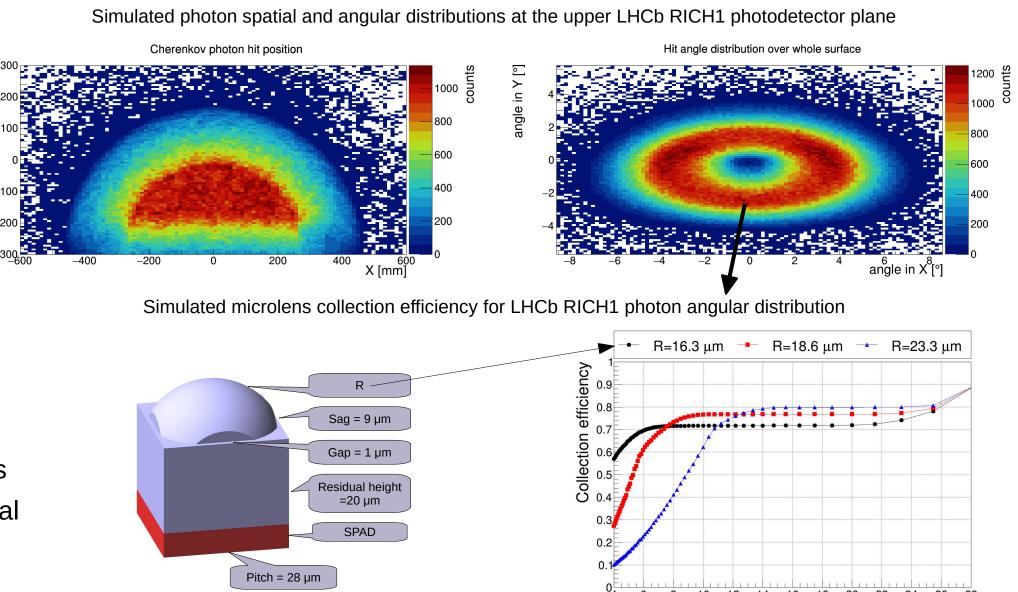
rad-hard design techniques at transistor and SPAD level

~ liquid nitrogen

- → integrated compensating electronics → switch off noisy
- SPADs, employ active recharge and custom hold-off times
- → microlenses → smaller SPADs

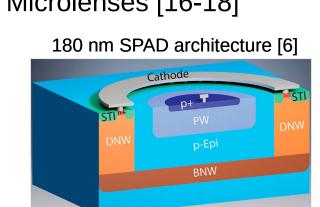
Cooling

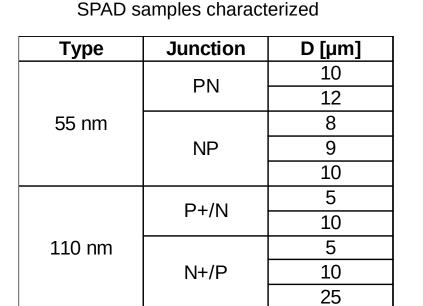
Possible SPAD/architecture optimizations in a RICH detector scenario:


- → limited photon angular acceptance (NA) → reduce SPAD size (DCR↓), compensate with microlenses
- → timing resolution, gated operation → reduce DCR and data rates
- → cryogenic (liquid nitrogen) operation → reduce DCR, but potential increase in afterpulsing (irradiated samples)

Power supply

Bias & Pre-amp


Power supply


Heaters

Methods

- **Samples characterized** • 180 nm CMOS SPADs [6-9]
- 110 nm CMOS SPADs [10]
- 55 nm CMOS SPADs [11-15] Microlenses [16-18]

P+/N

irradiation

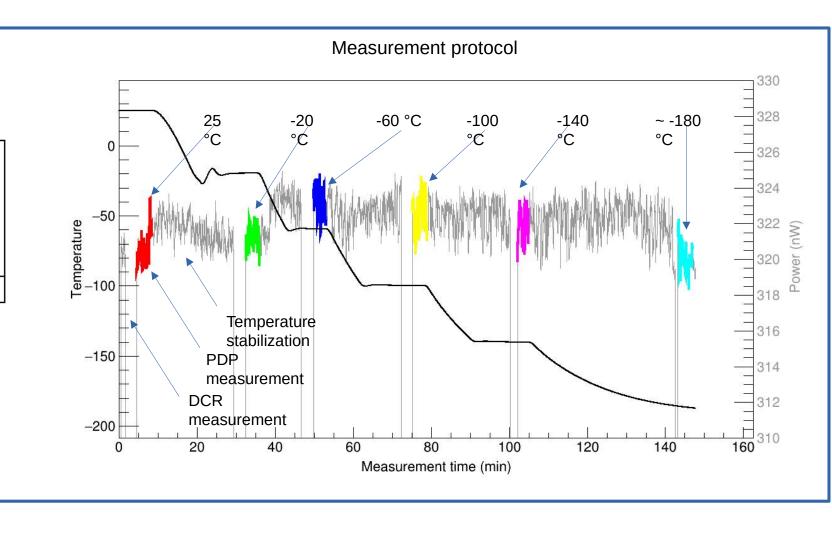
180 nm

25

1E+8

Neutron irradiation

- TRIGA Mark-III nuclear reactor [19]
- Irradiated in TOK2 channel between **10**⁹ **n_{eq}/cm**² and **10**¹³ **n_{eq}/cm**² (microlenses up to 10¹⁴ n_{eq}/cm²)


SPAD Characterization

- Stabilized in steps between room and liquid nitrogen temperatures
- Dark count rate (DCR) Afterpulsing probability (APP)
- Response to single photon level illumination

External quenching Optical fiber port RF shielding box Thermal isolation Resistive heaters (back side)

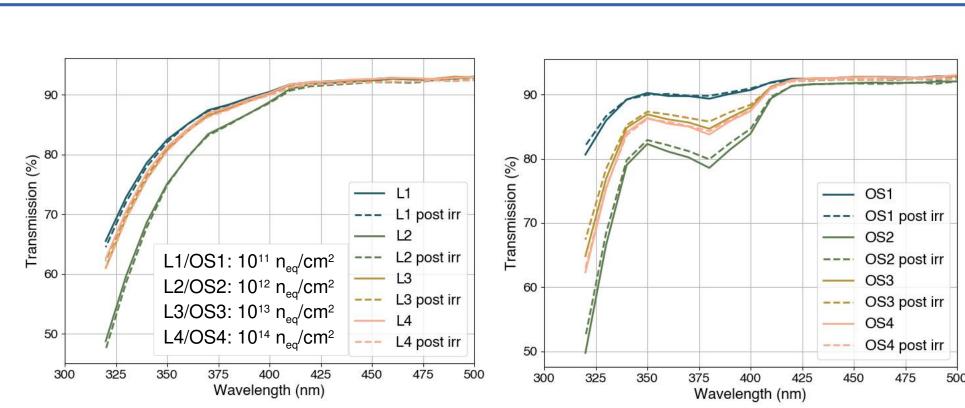
Cryogenic characterization experimental setup

Temperature

SPAD active area size [µm]

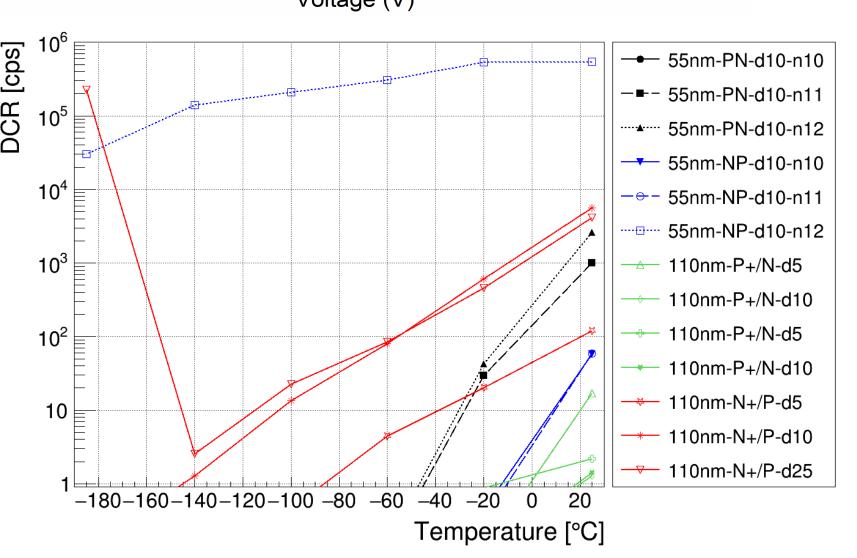
Results

180 nm CMOS SPADs:


- 4 SPADs per irradiation step
- The dark count rates averaged over the 4 SPADs were measured before and after irradiation
- Dark count rates before irradiation: ~ 10² cps
- After irradiation, the average DCR increased proportionally with the dose, by ~ 1 order of magnitude for each order of magnitude increase in dose

• More in [9]

- 1E10 <u>▲</u> 1E11 - 1E12 1E+7 ¹[n_{eq}/cm²] [cbs] 1E+6 ピロコ 1E+5 9 1E+4 1E+3 1E+2 DCR before 1E+1 24 27 28 25 Voltage (V)


Microlenses:

- Irradiated two commercial microlens process polymers on quartz substrate Lumogen – L, 120 μm thick
- Ormostamp OS, 500 μm thick
- No observable difference was seen even for 10¹⁴ n_{eg}/cm²
- More in [18]

55 nm & 110 nm CMOS SPADs:

- Single SPADs
- 55 nm SPADs were irradiated at 10¹⁰ n_{eg}/cm² (n10), $10^{11} \text{ n}_{eq}/\text{cm}^2$ (n11) and $10^{12} \text{ n}_{eq}/\text{cm}^2$ (n12)
- 110 nm SPADs were not yet irradiated
- results are shown for different spad architectures and diameters of 5 μm (d5), 10 μm (d10) and 25 μm (d25)
- Only one sample (55nm-NPd10) was significantly affected after irradiation of 10¹² n_{eg}/cm²
- Large increase in afterpulses was observed for 110nm with N+/P junction and diameter of 25 μm at LN temperature

SPAD DCR summary:

- Dark count rates for different SPADs
- before irradiation (DCR)
- after irradiation (DCR') at room temperature (RT)
- at liquid nitrogen temperature (LN)
- Excess voltages (V_{ex}) used are stated next to the DCR values
- More in [20]

Type	Junction	D	DCR [cps]	Irrad. flux	DCR' RT/LN
		$[\mu \mathrm{m}]$	$(V_{ex} [V])$	(n_{eq}/cm^2)	$(V_{ex} [V])$
	PN	10	4 (6)	10 ¹²	$3.10^3 < 1 (1.25)$
		10	7 (6)	10^{12}	$14 \cdot 10^3 / - (4)$
		12	150 (6)	10 ¹¹	$13 \cdot 10^3 / - (2)$
		12	6 (6)	10^{11}	$4 \cdot 10^3 / - (6)$
55 nm	NP	8	30 (6)	1011	20/- (6)
		8	40 (6)	10^{12}	400/- (6)
		9	30 (6)	10 ¹¹	30/- (6)
		9	30 (6)	10^{11}	60/- (6)
		10	100 (6)	10^{12}	$5 \cdot 10^5 / 3 \cdot 10^4 \ (1.25)$
		10	70 (6)	10 ¹¹	70/- (6)
		10	50 (5.5)	_	<u>~</u> 0
	P+/N	10	500 (6)	=	1/<1 (0.6)
		10	50 (6)	-	1/<1 (1)
		5	4 (5.5)	=	2/<1 (2.5)
		5	20 (6)	-	20/<1 (6)
		10	6.10^3 (6)	-	- //
110 nm	N+/P	10	$1.10^3 (5.5)$	=	≘
		5	200 (5.5)	-	100/<1 (4)
		25	$7 \cdot 10^3 \ (1.75)$	-	$4 \cdot 10^3 / 2 \cdot 10^6 $ (4)
		10	8.10^3 (4)	8	$6.10^3/<1$ (2)
		10	$1.10^4 (1)$	-	≅ 1
		10	5.10^3 (4.5)	-	=0
		10	80 (6)	=	=
				10 ¹⁰	2·10 ⁵ /- (6)
180 nm	P+/N	25	100 (6)	10 ¹¹	1.10^6 /- (6)
				10^{12}	$1 \cdot 10^7 / - (6)$

Conclusions

<u>Planned RICH detector upgrades → high photodetector requirements</u>

- Candidate photodetector: silicon photomultipliers
- Main challenge: neutron radiation hardness

spadRICH project: monolithic dSiPM for future RICH detectors

- CMOS SPADs in 55 nm, 110 nm and 180 nm Neutron irradiation up to 10¹² n_{eg}/cm² @ JSI TRIGA
- Cryogenic characterization

Next steps

- Characterization of larger number of samples
- Improve DCR measurement for < 1 cps Design and test candidate detector with masking, TDC and gating
- **Acknowledgments:**

This project has received funding from the Slovenian Research and Innovation Agency (project J1-50009) and the Swiss National Science Foundation (project No 200021E_218853). We would like to thank TRIGA nuclear reactor of Jožef Stefan Institute, especially A. Verdir and A. Jazbec for the help with SiPM irradiation.

Bibliography:

- [1] Framework TDR for the LHCb Upgrade II, CERN-LHCC-2021-012, LHCB-TDR-023. [2] Belle II Technical Design Report, https://doi.org/10.48550/arXiv.1011.0352
- [3] ALICE Collaboration, Letter of intent for ALICE 3: A next-generation heavy-ion experiment at the LHC, arXiv:2211.02491v1
- [4] D. Consuegra Rodríguez et al., Characterization of neutron-irradiated SiPMs down to liquid nitrogen temperature, Eur. Phys. J. C (2024) 84:970
- [5] A. Muntean et al., Towards a fully digital state-of-the-art analog SiPM, 2017 IEEE NSS/MIC Conference Record. [6] F. Gramuglia et al., Sub-10 ps Minimum Ionizing Particle Detection With Geiger-ModeAPDs, Front. Phys. 10 (2022) 849237.
- [7] M.-L. Wu et al., Radiation Hardness Study of Single-Photon Avalanche Diode for Space and High Energy Physics Applications, Sensors 2022, 22(8), 2919. [8] M.-L. Wu et al., CMOS SPADs for High Radiation Environments, presented at IEEE NSS/MIC 2022.
- [9] R. Dolenec et al., Neutron radiation hardness of single-photon avalanche diodes for future RICH detectors, presented at IEEE NSS/MIC 2023.
- [10] M.-J. Lee et al., A 73% Peak PDP Single-Photon Avalanche Diode Implemented in 110 nm CIS Technology With Doping Compensation, IEEE J. Sel. Top. Quantum Electron 30(1) (2024) 3800310. [11] F. Gramuglia et al., Engineering Breakdown Probability Profile for PDP and DCR Optimization in a SPAD Fabricated in a Standard 55 nm BCD Process, IEEE J. Sel. Top. Quantum Electron 28(2) (2022) 3802410.
- [12] W.-Y. Ha et al., SPAD Developed in 55 nm Bipolar-CMOS-DMOS Technology Achieving Near 90% Peak PDP, IEEE J. Sel. Top. Quantum Electron 30(1) (2024) 3800410.
- [13] F. Liu et al., Doping Engineering for PDP Optimization in SPADs Implemented in 55-nm BCD Process, IEEE J. Sel. Top. Quantum Electron 30(1) (2024) 3801407.
- [14] W.-Y. Ha et al., Single-photon avalanche diode fabricated in standard 55 nm bipolar-CMOS-DMOS technology with sub-20 V breakdown voltage, Opt. Express 31, 13798-13805 (2023). [15] A. Morelle et al., Deep cryogenic operation of 55 nm CMOS SPADs for quantum information and metrology applications, in Quantum Information and Measurement VI 2021, paper M2B.7.
- [16] C. Bruschini et al., Challenges and Prospects for Multi-chip Microlens Imprints on front-side illuminated SPAD Imagers, Opt Express. 2023 Jun 19;31(13):21935-21953. [17] C. Bruschini et al., High-efficiency fill factor recovery using refractive microlens arrays imprinted on 0.5-256 kpixel front-side illuminated SPAD imagers, presented at SPIE OPTO 2023.
- [19] K. Amrožič et al., Computational analysis of the dose rates at JSI TRIGA reactor irradiation facilities, Applied Radiation and Isotopes 130 (2017) 140–152. [20] R. Dolenec et al., SiPM and CMOS SPAD characterization at liquid nitrogen temperatures, JINST 20(6) (2025) P06052.

[18] G. G. Tayloer et al., Developing photodetectors for future RICH particle detector applications, presented at SPIE OPTO 2025.