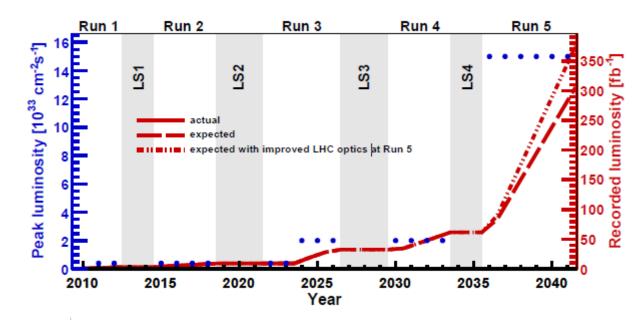
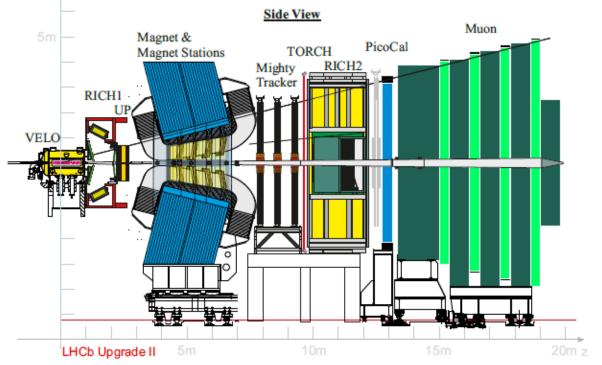
The Upgrade II of the LHCb RICH system

C. Gotti INFN/Univ. Milano-Bicocca

On behalf of the LHCb RICH Collaboration


RICH2025

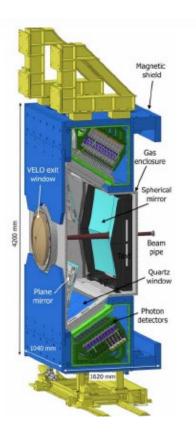

XII International Workshop on Ring Imaging Cherenkov Detectors 15 – 19 September 2025, Mainz, Germany

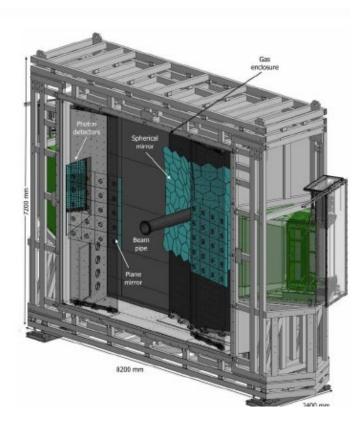
LHCb Upgrade 2

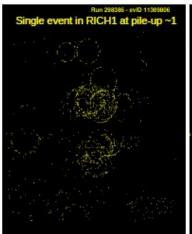
- LHCb experiment [2010-2018]
 - collected 9 fb⁻¹ in LHC Runs 1 and 2
- LHCb Upgrade I [2022]
 - Collected ≈ 16 fb⁻¹ so far
 - Aims at 50 fb⁻¹ by the end of Run 4
- LHCb Upgrade 2 [2036]
 - 5x 7.5x increase in peak luminosity
 - Aims to collect 300 fb⁻¹
 - Expression of Interest <u>CERN-LHCC-2017-003</u>
 - Physics case <u>CERN-LHCC-2018-027</u>
 - Framework TDR <u>CERN-LHCC-2021-012</u>
 - Scoping document CERN-LHCC-2024-010

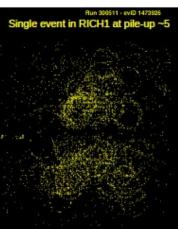
The RICH System

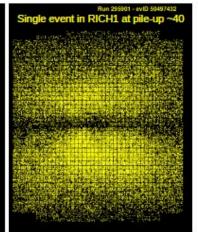
- RICH 1
 - 2 GeV/c 40 GeV/c (C₄F₁₀)
 - Upstram, covers 25 300 mrad
- RICH 2
 - 15 GeV/c 100 GeV/c (CF₄)
 - Dowstream, covers 15 120 mrad
- System installed and operated in Run 1 & 2
- Upgraded during LS2 and operating since 2022

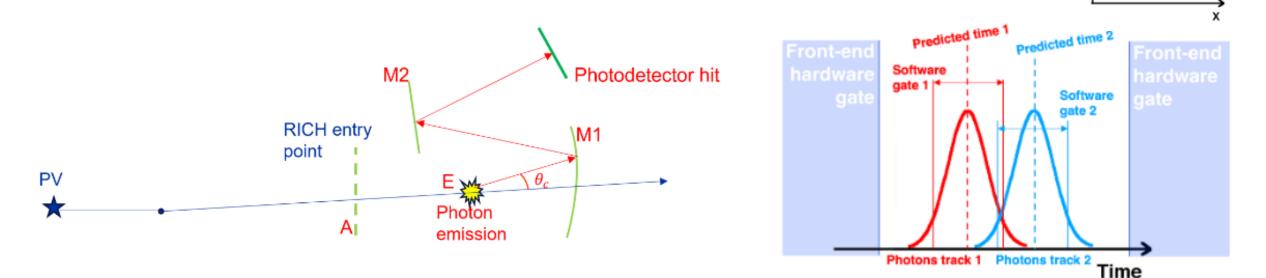

See talk by G. Cavallero:


The LHCb RICH detectors: operations and performance


• Goal for Upgrade 2:

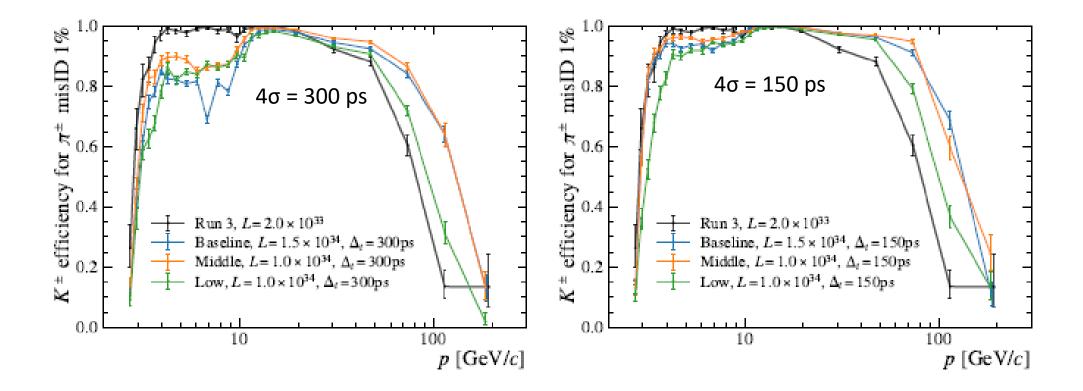

Maintain the same (or better) PID performance of Run 3 with a 5x - 7.5x higher luminosity


- Much harsher conditions (pile-up, radiation, ...)
- Tightly constrained detector envelope



Timing in the LHCb RICH (1)

- The time of arrival of Cherenkov photons from a given track can be predicted to ≈10 ps
 - The emission of Cherenkov photons is prompt
 - Different photon paths inside the radiator cancel out
- A hardware gate (a few ns) can be used to reject background (6.25 ns already implemented in Run 3)
- Fine timing (≈100 ps) can help to separate Cherenkov rings



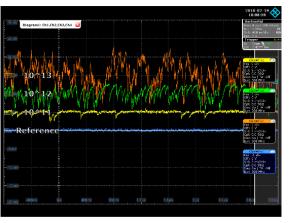
See talk by A. Upadhyay:

Primary vertex time reconstruction using the LHCb RICH detectors

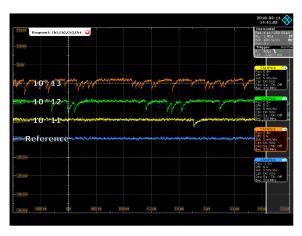
Timing in the LHCb RICH (2)

- Introducing timing in the LHCb RICH detector is a powerful tool to recover PID performance at high pile-up
 - Black curve: Current PID performance (Run 3, simulated)
 - Coloured curves: x5 x7.5 luminosity (Upgrade 2 scenarios)
 - Better time resolution translates directly to better PID

Photon Detectors


- Multi-anode PMTs are used in the present (Upgrade I) RICH system
 - Pixels of ≈ 3x3 mm², timing not great (≈ 150 ps RMS)
 - Peak occupancy is already ≈30% in the central region of RICH1 (≈10⁶ photons/s/mm²)
 - Without a significant increase in the focal length, pixels of 3x3 mm² are too large
 - May still be used in Upgrade 2 in low occupancy regions, as a backup solution
- SiPMs are the most promising candidates
 - Small pixels, good timing, high QE
 - Fluence of a few 10¹³ n/cm² before shielding, no safety factor
 - Require shielding and annealing
 - Need cooling to very low temperature (likely down to LN2)
 - Might require replacing during the run

MCP-PMTs


- Ideal for time resolution, pixels size, radiation tolerance
- Typically saturate at ≈100 kHz/mm², 1-2 orders of magnitude below the expected photon rate in high occupancy regions of RICH1 in Upgrade 2

Hamamatsu s13360-1350cs (state of the art)

https://doi.org/10.1016/j.nima.2019.01.013

-30°C before annealing

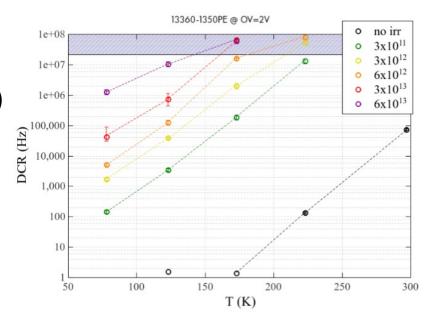
-30°C after annealing (weeks at 175°C) DCR still too high

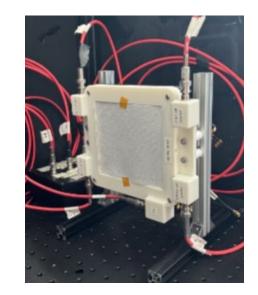
Photon Detector R&D

SiPMs R&D:

- Commercial SiPMs at a few 10¹³ n/cm² are severely damaged
- Dark count rate ≈ 1 MHz/mm² already at 77 K and reduced overvoltage (2V)
- Annealing not yet considered
- Gain and time resolution are not significantly affected by neutron fluence
- R&D ongoing with Hamamatsu and FBK to develop custom devices with better radiation tolerance

See poster by M. Guarise:


Characterization of SiPMs for the LHCb RICH Detectors Upgrade-II

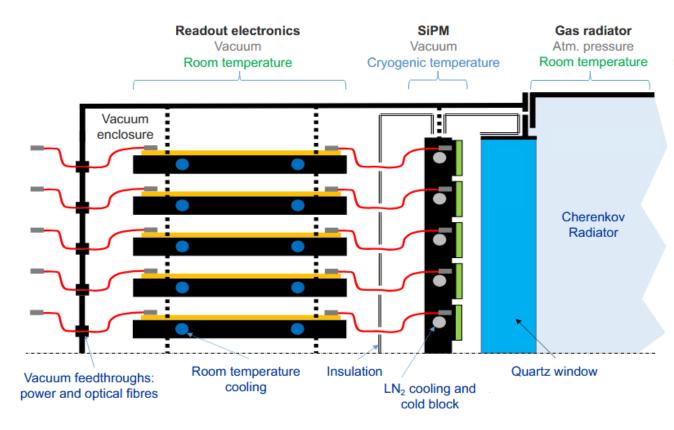

MCP R&D:

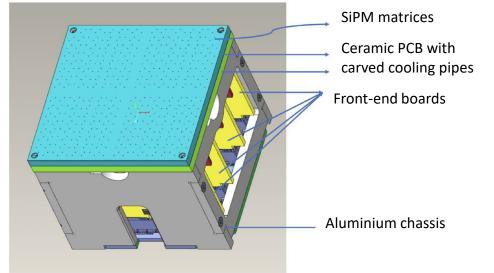
 High Rate Picosecond Photodetector (HRPPD) from Incom shows promising increase of rate capability compared other MCP-PMTs

See poster by D. Foulds-Holt:

Large Area Picosecond Photodetector for the Upgrade II of the LHCb RICH

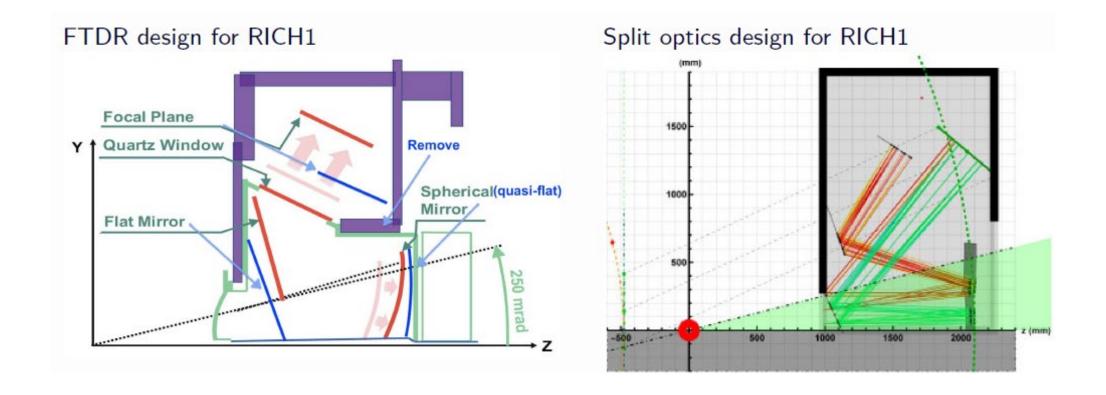
C. Gotti - RICH 2025 7


Photon Detector Cooling

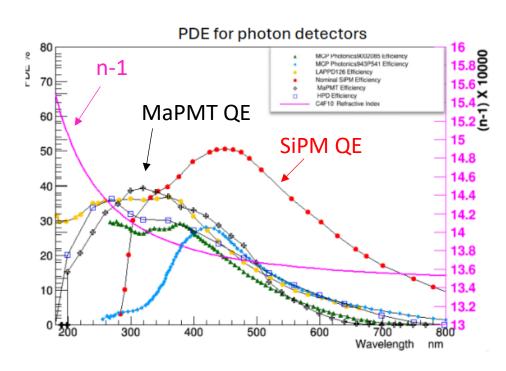

- Cryostat concept:
 - Thick (≈50 mm) transparent window between the photodetector plane and the gas enclosure
 - SiPMs at LN2 temperature
 - SiPMs and front-end electronics in vacuum, connected by a flex PCB
 - Extremely challenging

See poster by L. Malentacca:

A cryogenic RICH detector demonstrator for SiPM operation with integrated flex-PCB electronics


- Possible alternative:
 - Locally cool the SiPMs to -60°C or -80°C
 - SiPM mounted on a ceramic PCB with carved cooling pipes
 - Viable if R&D on SiPMs results in improved radiation tolerance, and/or if SiPMs can be replaced periodically

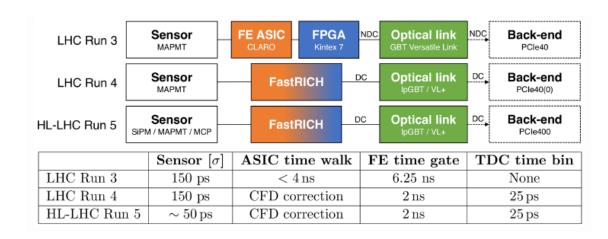
RICH Optics (1)


- Move flat mirrors in the acceptance, to reduce aberration and improve emission point error
- Increase the radius of curvature of spherical mirrors, to reduce occupancy and improve pixel error
 - Upper limit due to contraints on the overall detector envelope
- Two layouts under study, single and split optics

RICH Optics (2)

- Both options improve the Cherenkov angle resolution by a factor ≈2 compared to current (Run 3)
- SiPMs as photon detectors also help (smaller pixels, higher QE at longer wavelength)
- Studies still ongoing

	Total [mrad]	Chr. [mrad]	Emis.Pt [mrad]	Pixel [mrad]	Yield
Split-Optics/MaPMT	0.71	0.59	0.15	0.38	50
Split-Optics/SiPM-Hamamatsu	0.37	0.30	0.12	0.14	56
Split-Optics/SiPM-FBK	0.38	0.33	0.12	0.13	57
Run3/MaPMT	0.83	0.58	0.37	0.46	59
Run3/SiPM-Hamamatsu	0.59	0.34	0.45	0.18	68
FTDR/MaPMT	0.75	0.58	0.16	0.44	48
FTDR/SiPM-Hamamatsu	0.42	0.31	0.13	0.17	53



See poster by E. Spadaro Norella:

Optimized optical design of the LHCb RICH detectors for Upgrade-II

LS3 Enhancements

- Introduce time stamp of Cherenkov photons already in Run 4
- Keep MaPMTs, replace the front-end electronics
 - FastRICH ASIC with 25 ps TDC bins, potentially ready for Upgrade 2
 - Prototypes received in May 2025: under test
 - Timing in Run 4 will be limited by photon detectors to ≈150 ps RMS
 - Expected improvement in PID performance already in Run 4
- PID Enhancement TDR CERN-LHCC-2023-005

Backboard

Backboard

Doard with lpTCM, lpDTM and bPOL

MAPMTs, baseboard and new chassis

FEBs with FastRICH

Kaon ID Efficiency / %

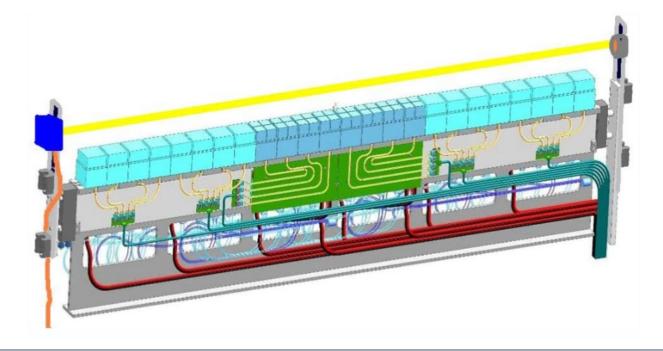
100

No time gate 6.25 ns

10 - 600 ps

Pion MisID Efficiency

See poster by V. Placinta:

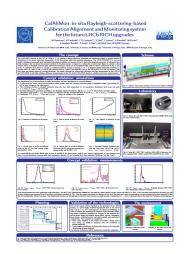

The LS3 Enhancement of the RICH detectors

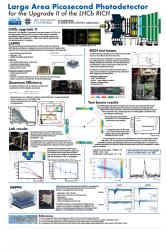
See poster by F. Keizer:

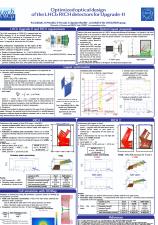
The FastRICH ASIC for next-generation RICH detectors

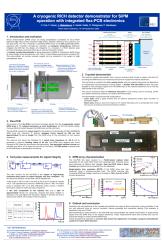
Calibration and alignment

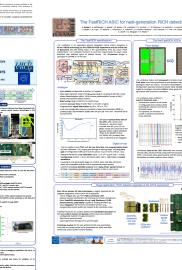
- A calibration, alignment and monitoring system («CalAliMon») based on Rayleigh scattering
 - Pulsed laser beam parallel to the photon detector plane
 - Scattered photons result in uniform illumination with good time resolution
 - Plans to deploy it during LS3 and keep it for Upgrade 2




See poster by R. Cardinale:


CalAliMon: In-Situ Rayleigh-Scattering based Calibration Alignment and Monitoring system for the future LHCb RICH upgrades


Conclusions


- The LHCb Upgrade 2 poses unprecedented challenges for a RICH detector
- Strong synergy with DRD4 in all areas, but shorter time scale
- R&D ongoing on all fronts:
 - Photon detectors
 - Cooling
 - Optics
 - Mechanics
 - Fast electronics
 - Calibration and Alignment

- These is still time to go into details with our poster presenters...
- ...and plenty of work for anybody willing to join!

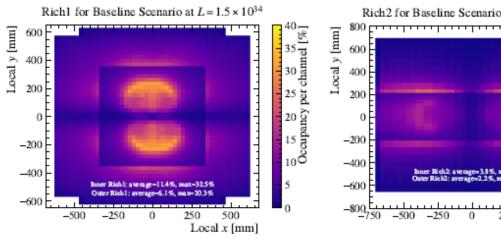
Spare slides

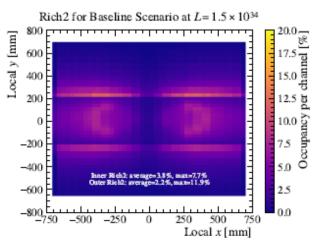
Scoping scenarios

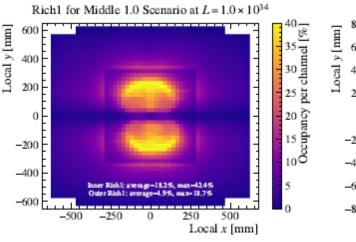
Baseline	Middle	Low		
$1.5\times10^{34}\rm cm^{-2}s^{-1}$	$1.0\times10^{34}\mathrm{cm^{-2}s^{-1}}$	$1.0\times10^{34}\mathrm{cm^{-2}s^{-1}}$		
RICH1/2				
inner:outer $\frac{1}{3}$: $\frac{2}{3}$	inner:outer $\frac{1}{4}$: $\frac{3}{4}$	inner:outer $\frac{1}{4}:\frac{3}{4}$		
inner $1.4\mathrm{mm}$ SiPM	inner $2.0\mathrm{mm}$ SiPM	inner $2.0\mathrm{mm}$ SiPM		
outer $2.8\mathrm{mm}$ SiPM	outer $2.8\mathrm{mm}$ SiPM	outer $2.8\mathrm{mm}$ MaPMT		
new optics	new optics	new optics (RICH1 only)		
750,000 channels	469,000 channels	445,000 channels		

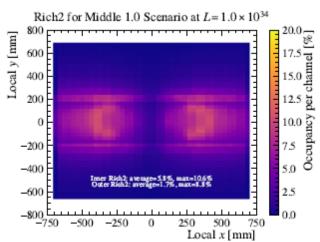
750,000	channels	469,000 cha	inels 445,000 channels		els
Scenario	High occu-	Pixel size in high	Pixel size in low	Readout	New optical
	pancy area	occupancy area	occupancy area	channels	layout
Baseline	1/3	$1.4 \times 1.4\mathrm{mm}^2$	$2.8 \times 2.8\mathrm{mm}^2$	750,000	RICH1, RICH2
Middle	1/4	$2.0 \times 2.0\mathrm{mm}^2$	$2.8 \times 2.8\mathrm{mm}^2$	469,000	RICH1, RICH2

 $2.8 \times 2.8 \,\mathrm{mm}^2$

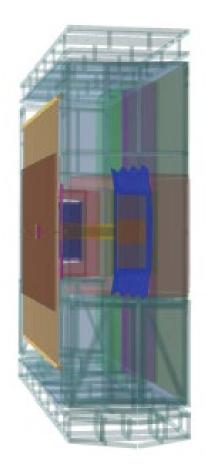

445,000

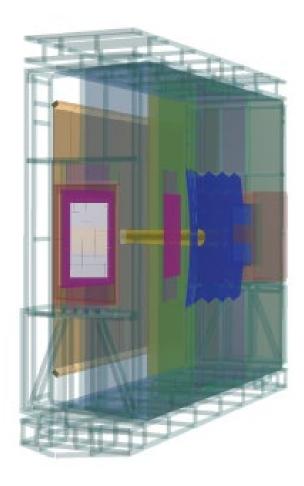

RICH1


 $2.0\times2.0\,\mathrm{mm^2}$

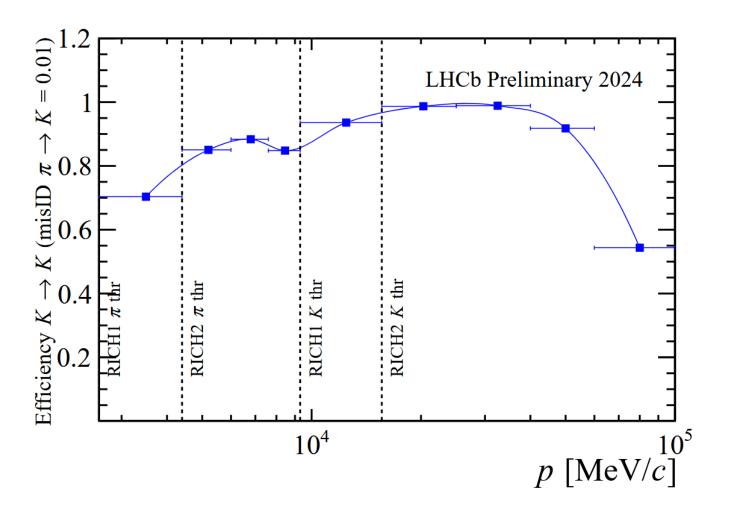

1/4

Low





RICH+TORCH


- TORCH could improve the overall LHCb PID by complementing the RICH at low momenta
- TORCH integration forces reworking the RICH2 vessel
- Combined performance studies are ongoing

TORCH inside RICH2

Run 3 performance

FastRICH

Parameter	Specification
Technology	65 nm CMOS
Die dimensions / # of pads	$5 \times 5 \mathrm{mm}^2 / \mathcal{O}(100)^2$
Package / sensor coupling	QFN88
Radiation hardness	Yes (TID > 100 Mrad and triplication)
# of channels	16
Channel type	Linear (i.e. not pixelated)
Channel connection	Single-ended
Polarity	Configurable positive or negative
Input signal attenuation	Configurable per channel: 0, 25%, 50%, 75%
TDC time bin	$25\mathrm{ps}$
Electronics time jitter	$\sim 40 \mathrm{ps}$ RMS for $50 \mu\mathrm{A}$ pulses.
	$\sim 30 \mathrm{ps}$ RMS for pulses above $100 \mu\mathrm{A}$.
Residual time walk	$< 200 \mathrm{ps}$ pk-to-pk (after CFD, over $50 \mu\mathrm{A}$ to $5 \mathrm{mA}$ range)
CFD recovery time	15 ns
Time gate	2 ns nominal,
	configurable width and offset to the 40 MHz clock
Power consumption analog	Target $< 4.5 \mathrm{mW}$ * per channel
Power consumption digital	$\sim 2\mathrm{mW}$ per channel
Energy resolution	Non linear (not required when CFD is implemented).
Dynamic range	$5\mu\mathrm{A}$ to $5\mathrm{mA}$ **
Maximum front-end rate	Ability to detect signals spaced by 25 ns
Testing and calibration	Internal test charge generation controlled by digital signal
Slow control interface	I2C with multiple chips on the same I2C bus
VCO oscillation freq.	$1.28\mathrm{GHz}$
# of VCO stages	16
ToA Bits/event	fToA @800ps: 2 (Assumes a 2 ns gate)
	ufToA @25ps: 5
Output	Digital differential, lpGBT compatible
Output links freq.	160, 320, 640, 1280 MHz
# of output links	Programmable at chip level from 1 to 4