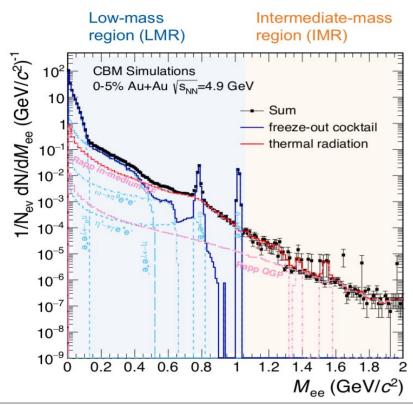
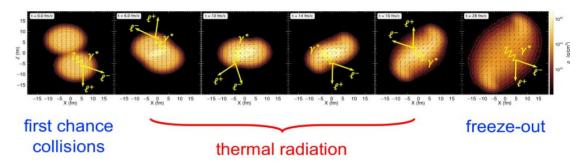
Status of the CBM RICH detector -

towards first beam in 2028

C. Pauly, BU Wuppertal for the CBM RICH collaboration

- Overview
- Status CBM RICH
 - the CBM RICH photon detector
 - mirrors and mirror wall
 - other components
- Towards first upgrade:
 - SiPMs instead of MAPMTs?
- Summary





Dileptons – one of CBM's key observables

Electromagnetic radiation as multi-messenger of fireball

- No strong final state interaction
 - → leave interaction volume undisturbed
 - → reflect the whole history of HI collision
- Encodes information of matter properties
 - degrees of freedom of the medium
 - fireball lifetime, temperature, polarization
 - restoration of chiral symmetry

LMR → "Chronometer" : total yield ~ fireball lifetime IMR → "Thermometer" : slope ~ emitting source temperature

The CBM Experiment

Fixed target experiment

- tracking acceptance : $2.5^{\circ} < \Theta_{lab} < 25^{\circ}$

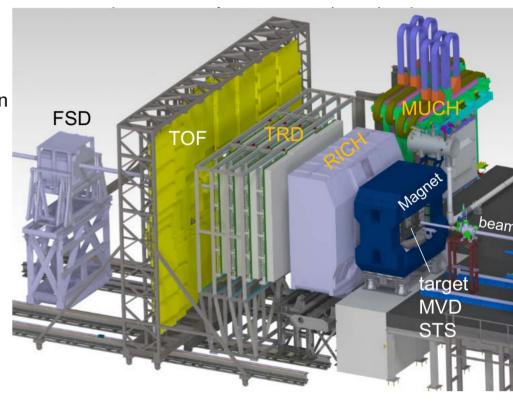
• 2 interchangeable detector setups:

- electron setup : RICH detector for e / π separation

- muon setup : MUCH- instrumented absorber

Peak interaction rate : 10 MHz (Au+Au)

(300 kHz with MVD)

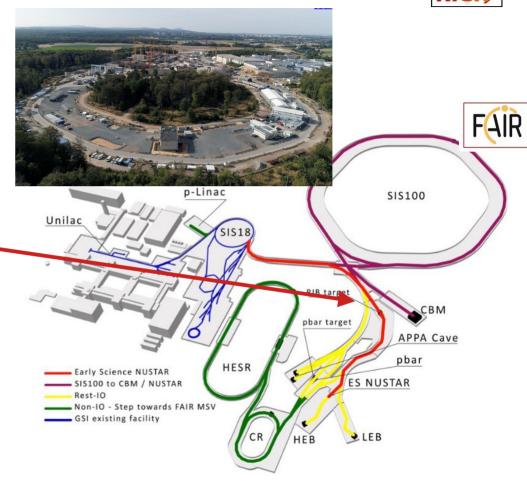

Free-streaming, self-triggered DAQ system

Online event reconstruction and selection

Fast and radiation hard detectors

4D tracking (space + time)

Data rate : up to 1 TB/sec



FAIR facility and CBM cave

- CBM cave ready (painted and pretty...)
- RICH EDR mirror + mirror wall : next month
- RICH EDR + PRR mechanics next year
- Installation in cave -> 2027
- First beam in cave -> end 2028

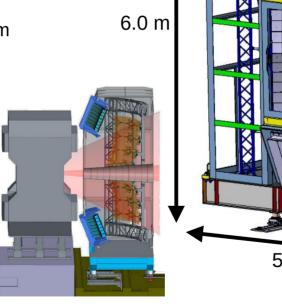
The CBM RICH detector

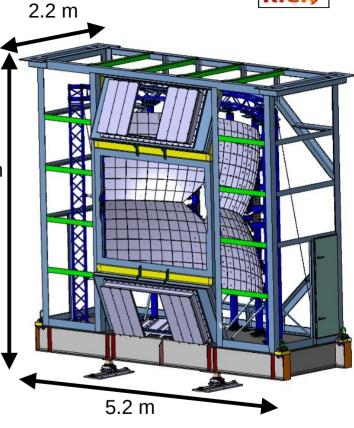
CO₂ gas radiator

- pion threshold 4.65 GeV/c, n=1.00045
- UV cutoff < 190 nm
- 70 m³ radiator gas volume, ~1.7 m radiator depth
- good quenching of scintillation light

• 13m² segmented mirror, upper+lower half

- 80 spherical lass tiles 40x40 cm², d=6mm, R=3.0 m
- AI + MgF₂ (+ HfO₂) coating


MAPMT readout:


- 1100 Hamamatsu H12700 MAPMTs
- FPGA-TDC based readout chain, 64k channels
- excellent photon timing precision (< 300 ps RMS)

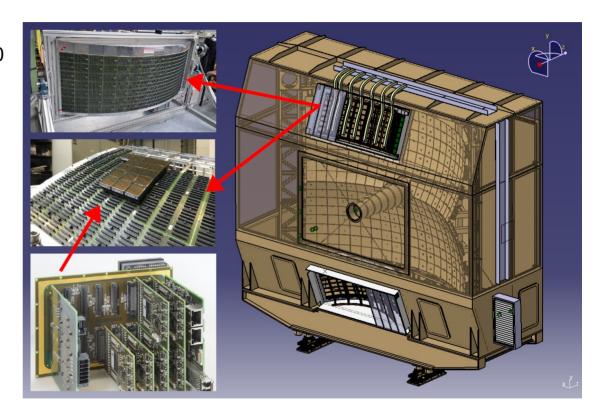
Challenges:

- high rate (up to 300 kHz photon rate per pixel)
- quasi free-streaming readout
- RICH downstream of tracking system
- magnetic stray field from CBM magnet (shielding box)
- RICH movable by crane

- since 2022: cooparation with PNPI St. Petersburg ceised

Weight : ~15 t

The CBM RICH photon detectors



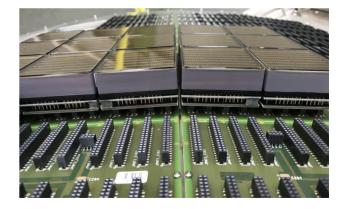
Two separate photon detectors

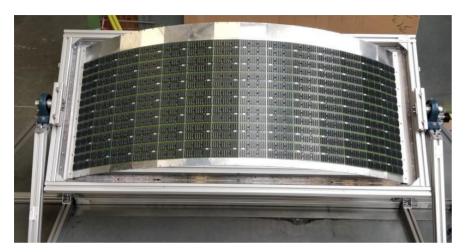
- 1100 Multi-anode PMTs Hamamatsu H12700
- 65000 individual readout pixel, 6x6 mm²
- protected by magnetic shielding boxes

Electronic readout chain

- FPGA-TDC based "DIRICH" readout chain
- TDC timing precision : <20 ps RMS (leading+trailing edge -> ToT)
- organized in modules :
 6 MAPMTs → 12+2 FE modules
- up to 300 kHz photon rate / pixel

Photon camera design – some pictures





Photon camera design – some more pictures

CBM RICH Front-end Electronics

- FPGA-TDC based readout chain "DIRICH"
 - developed at GSI, already used in HADES
 - also used in many other applications (eg. PANDA DIRC)
- Electronic module production far advanced:

2500 DIRICH TDC modules: 45% produced (GSI)

- 210 DIRICH Concentrator: 100% produced (GSI)

210 DIRICH Power modules : 100% produced (GSI)

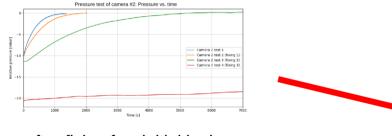
220 Backplane PCBs: 100% produced (extern)

- Dedicated series testing of each produced module
 - < 10 % faulty modules on first test</p>
 - most of them can be reworked
- Qualification of free-streaming readout chain:
 - → mini-CBM mRICH detector

poster: "The mRICH detector [...]"
Abhishek Deshmukh
this conference

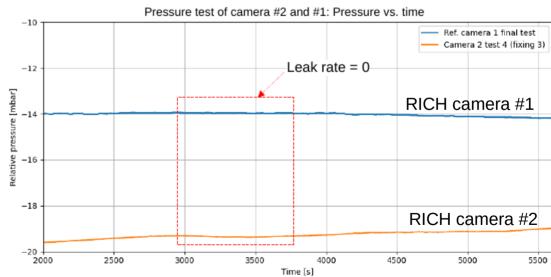
CBM RICH readout module for 6 MAPMTs:

- Backplane PCB
- 12x DIRICH TDC modules
- 1x Data Concentrator module
- 1x Power Module



meanwhile 7 such boxes...

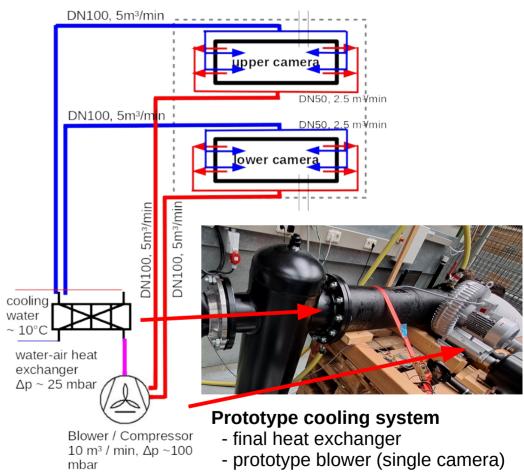
Pressure leak test of camera modules



- Photon sensors inside CO₂ radiator volume
- Front end electronics outside radiator volume
- Over / Underpressure test up to 20 mbar measured over 90 min
 - \implies leak rate < 1x10⁻⁴ mbar m³/s
- Also serves as test of mechanical stability (20 mbar ~ 200 kg load on PMT plane!)

after fixing few initial leaks... (using CO_2 sniffer)

Camera air cooling concept



Around **3kW heat dissipation per camera**Camera **volume enclosed by shielding box**

- Heat exchanger to cooling water (cave)
- Electric blower for enforced air circulation
- "Reverse" air-flow, away from photon sensors! (important lesson from HADES RICH upgrade)
- CNC-milled air distribution parts ("mask")

First test – Single column, 7 readout modules powered

goal:

Keep MAPMT cathode temp < 30°C despite heat load from front-end electr.

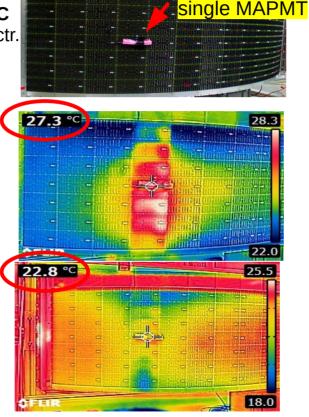
Blower freq. : 10 Hz

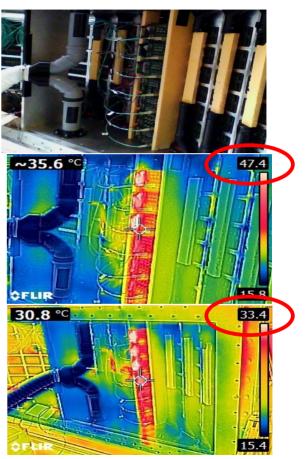
Air flow (per column): 54 kg/h

T_{air}: 11.3 °C

→ MAPMT Temp: 27 °C→ Electronics Temp: 47 °C

Blower freq. : 20 Hz

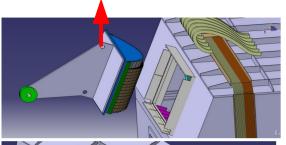

Air flow (per column): 105 kg/h

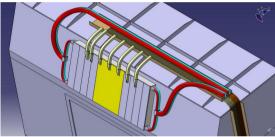

T_{air}: 10.5 °C

→ MAPMT Temp: 23 °C→ Electronics Temp: 33 °C

Room Temperature:

 $T_{room} \sim 25$ °C




Mind change in color range...

crane

Maintenance access for photon cameras

mounting flange camera flange

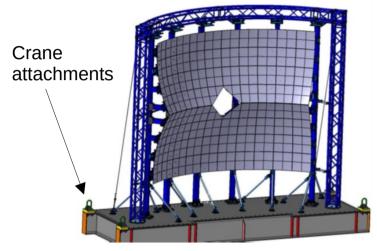
Maintenance access in-situ difficult

- camera enclosed by iron shielding box
- upper camera at a height of ~6 m
- access from inside radiator vessel difficult due to mirror wall

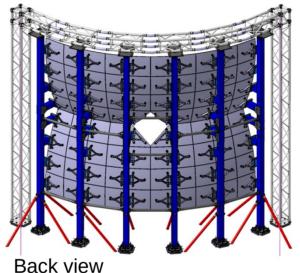
remove (upper) camera for maintenance

• Special crane tool for camera (de)installation

- precise tilt angle (+/- 24 °) achieved using counter weight
- protective covers for MAPMTs
- crane weight-scale to ensure force-less removal
- cameras only fixed via mounting flange


All connecting cables will stay with RICH detector

- removable cable trays for easy (un)cabling

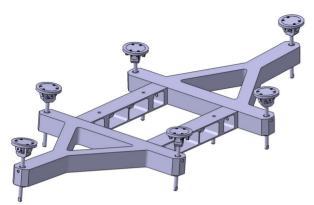

The CBM RICH mirror wall

2x CIRCLE SEGMENTS (2x 41,6°)

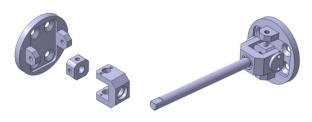
Front view – with platform

2x STRAIGHT SEGMENTS (2x 42cm)

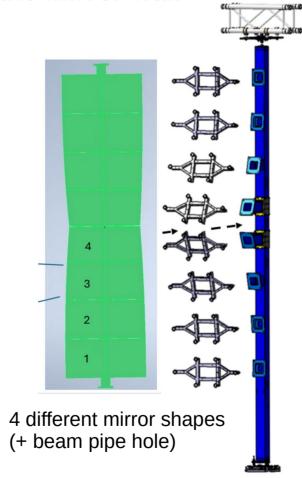
Outer frame structure

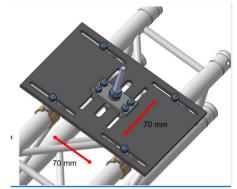

Engineering desing review Mirror wall: next month

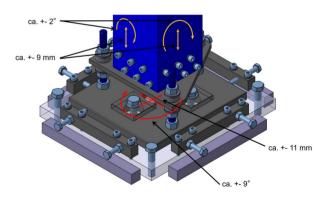
- **Engineering design review mirror wall: next month**
- Mirror wall only attached to massive RICH platform (\rightarrow crane operations...)
- 6 aluminum pillars, 100 x 100 mm² x 2 mm, each carrying 2 (1) columns of 8 mirror tiles
 - 3-4 mm gap between mirrors
 - < 1 mrad / < 1 mm alignment / position accuracy
- Adjustable pillar feet for alignment


poster:

"Mirror system of the CBM RICH" Sven Peter, this conference


Elements of the mirror wall


Mirror mounting bracket carrying two mirrors each

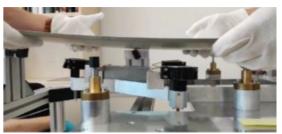

Mirror cardan joints - 3 mounts per tile

RICH)-

Upper pillar fixation+alignment

Lower pillar alignment foot

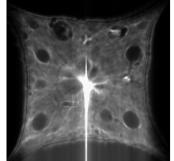
Mirror pillar prototype at JLU Gießen



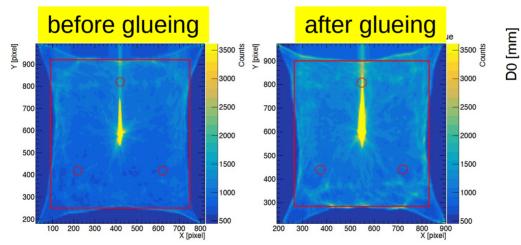
Prototype of pillar alignment fixations

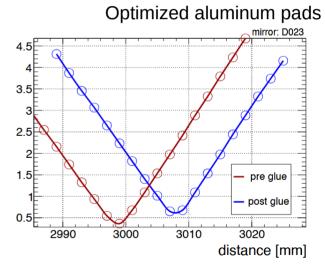
Mirror glueing procedure special glueing table for precise alignment

Single pillar + frame prototype with 4 mounted mirror tiles


Mirror glueing and possible distortion

RICH)

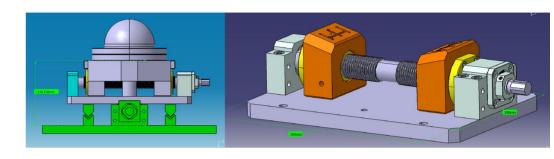

- Mirrors fixed by 3 glue pads each
- Detailed studies on optimum glue, pad shape, procedures, ...
- Glue: Momentive RTV 157 1-component silicone
 - radiation hard according to CERN yellow report (DOI: 10.5170/CERN-1982-010)



Ronchi-like test image revealing glue deformation

Comparison: before- vs after glueing applying optimized glueing precedure using optimized aluminum pads

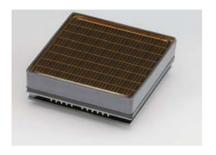
D₀ test for local change in R₀ due to glueing deformation:


 \rightarrow deformation < 1 cm in R₀

Other components: RICH alignment feet

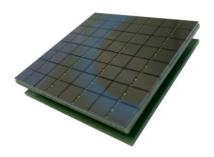

Requirements:

- Full RICH ~15t resting on 3 feet (+...)
- Load capacity: 5-7 t / foot
- Height adjustment: $\Delta = 3$ cm
- Movable in beam-direction: ~ 40 cm
- Reproducible detector positioning for crane ops.



First studies towards a possible future upgrade with SiPM-MPPCs

SiPM MPPCs – a possible upgrade for CBM RICH?



CBM-RICH day 1: H12700 Multi-anode PMT

Multi-pixel MPPC SiPM

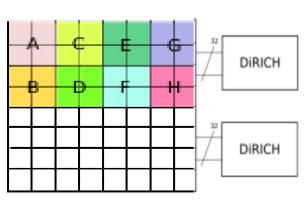
- MAPMTs: current "state-of-the-art" in RICH
 - 3x3 mm² / 6x6 mm² pixel size
 - Hamamatsu only manufacturer
 - market+pricing driven by medical applications (PET scanners)
 - Good efficiency (30+ % peak)
 - Good timing (350 ps FWHM)
 - Radiation hard
 - Very robust, durable
 - Low dark rate (<< 100 Hz / pixel)

- Better efficiency (up to 65% peak PDE)
- Better resolution (3x3 mm pixel and less)
- Better timing precision (typ. 50 ps)
- Much larger dark count rate : MHz / pixel
- Low radiation hardness.

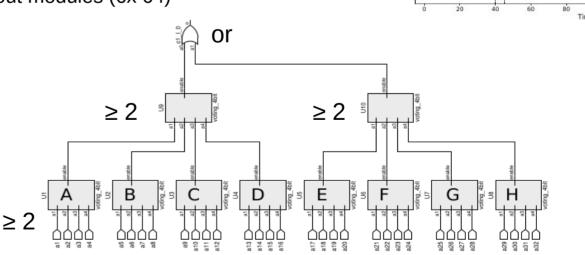
Particular challenges in CBM:

- Free-streaming, self-triggered DAQ
- SiPM Pixel dark rate: ~ MHz / pixel
- Radiation: 2 months CBM SIS100 HI run

$$0.8 - 5 \times 10^{10} \, n_{eq}/cm^2$$


SiPMs @ CBM RICH: Local coincidence triggering on DIRICH front-end FPGA

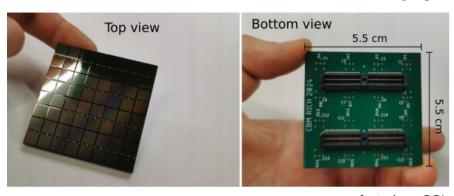
particle path



Strategy:

- Use existing DIRICH front-end + adapter
- Keep (start...) with same form factor as MAPMTs: 6x6 mm² pixel size
- Signal shaping / tail cancellation of SiPM signals
- Implement local coincidence logic on DIRICH FPGA:
 4-pixel coincidence + majority logic
- Possible 2nd step: extend over full readout modules (6x 64)

8x8 SiPM pixel MAPMT equivalent



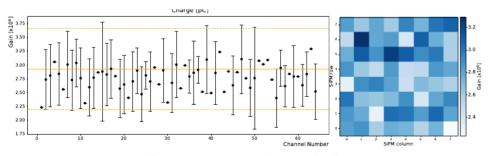
Cherenkov ring

Cherenkov photons

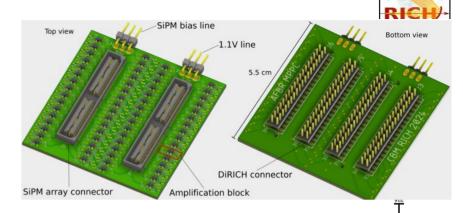
detector

First SiPM array prototype

8x8 SiPM prototype:

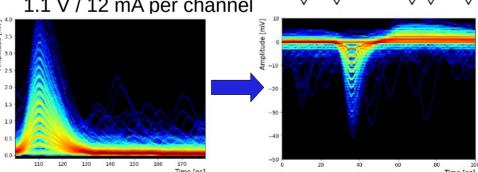

manufacturing: GSI

64x Broadcom AFBR - S4N66P024M


gain: $\sim 2.6 \times 10^6$

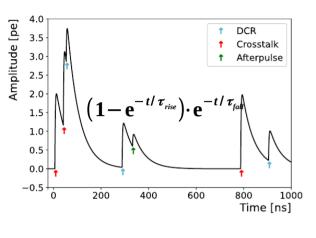
DCR: 150 kHz / mm², ~5 MHz / pixel

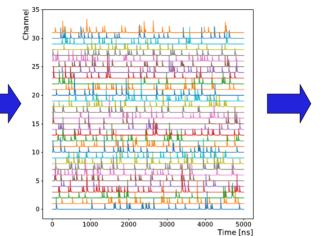
PDE: 63% peak



SiPM array gain variation

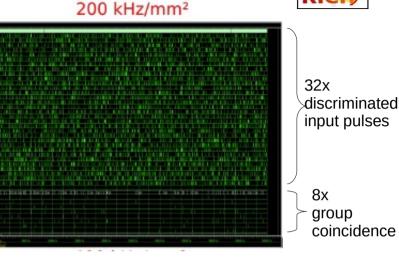
Preamp + Adapter board: 64x shaper+amplifier pinout identical H12700 match CBM RICH readout gain : ~ x12


1.1 V / 12 mA per channel



64x

First simulations on trigger performance



32x individual SiPM pixel

+ correlated (cherenkov) signal

FPGA signal simulation

Realistic SiPM signal simulation including

- Signal shape (rise / fall time)
- Dark count rate (DCR)
- Cross talk
- Afterpulsing

First results:

- 2 MHz/channel DCR → output rate ~ 1 kHz / DIRICH
- 7 MHz/channel DCR → output rate ~20 kHz / DIRICH
- Strong dependence on coincidence window...

"A simulation framework for SiPMs"

J. Pena-Rodríguez et al. JINST 20 (2025) P04031

poster: "SiPM-based RICH detector..."

J. Pena-Rodríguez this conference

Summary

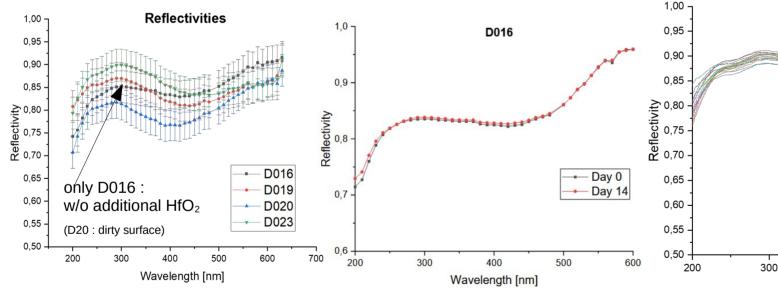
- Transition from design- to contruction phase
- Several crucial Design Reviews within next months
 - mirror + mirror wall (Oct 2025)
 - mirror alignment
 - RICH mechanics
- Both photon cameras fully assembled
 - large fraction of front-end electronics produced
 - full system cooling test upcoming
- RICH detector installation in cave : **2027**RICH ready for first beam : **end 2028**
- First R&D towards possible future SiPM upgrade

For further details:

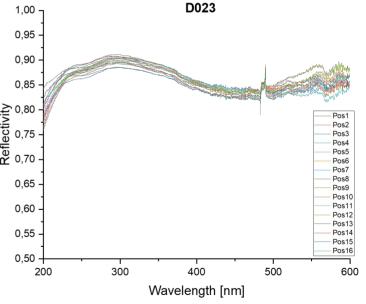
poster: "Mirror system of the CBM RICH"
Sven Peter

poster: "The mRICH detector for the mCBM Prototype Experiment" Abhishek Deshmukh

poster: "CBM RICH ring reconstruction using Machine Learning"
Martin Beyer


poster: "SiPM-based RICH detector at an upgraded CBM experiment"
J. Pena-Rodríguez

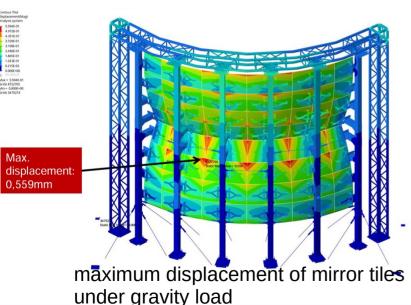
Mirror tiles

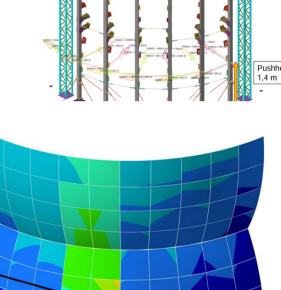


- Mirror tiles from Fa. JLO Olomouc
- 6mm Simax glass + MgF₂ (+HfO₂) coating additional HfO₂: better stability, slightly better (+3%) overall reflectivity
- 80 tiles, 4 different trapezoidal shapes, + 4 special (beam pipe)
- stability of reflectivity and coating : tested in climate chamber

measured reflectivity on prototype tiles

effect of humidity 70%, 14 days in climate chamber




Reflectivity - surface homogeneity

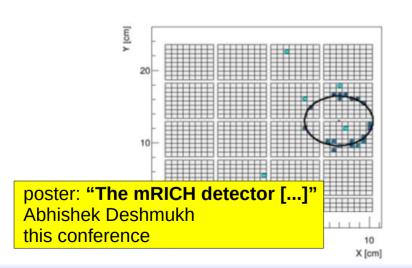
Mirror wall stability FEM simulations

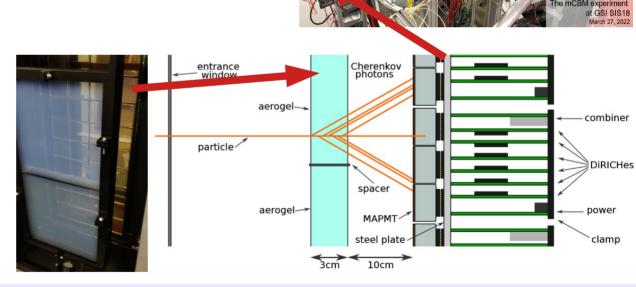
RICH

- Comprehensive FEM stability simulations of mirror wall
 2D simulation, HyperMesh + OptiStruct
 - under influence of gravity
 - during crane operation
 - worst-case accidents (person stumbling against mirror pillar)
 - mild earthquakes (~ 1 m/s² acceleration)
- Mirror tiles must not touch under any circumstance!

max. displacement and min. distance if person accidentally "pushes" against pillar with 1500 N

Max. displacement


5.194mm


Min. distant

DIRCH readout chain within mRICH@mCBM operational!

- mRICH @mCBM detector:
 - 2 aerogel tiles, 36 MAPMTs, 6 readout modules
 - same DIRICH-MAPMT readout chain as in CBM RICH
- Successful integration of DIRICH into CBM CRI-based readout
- CBM-like free-streaming, triggerless readout already operational!
- Important test bed for further DAQ developments!
- Successful participation in 2024 and 2025 data runs

