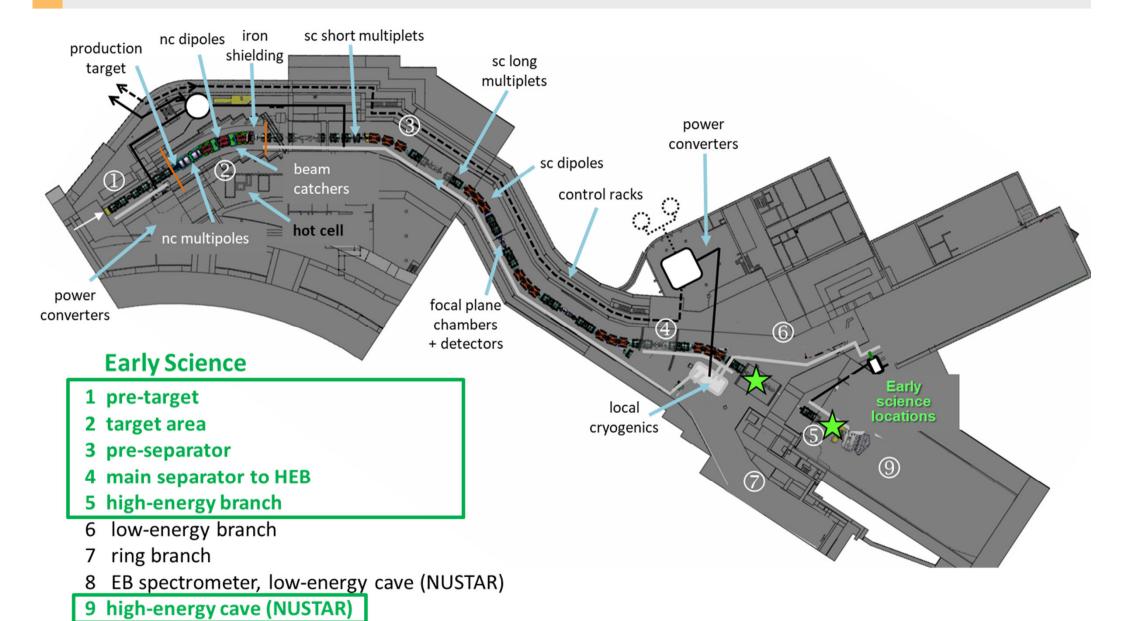


Outline

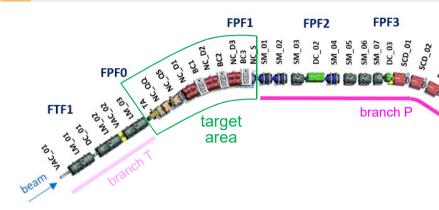
1) **Early Science Scope** 2) 'Plan-B' Procurements Energy Buncher 3) **Procurement Overview** 4) **Installation & Commissioning** Magnetic Spectrometer 5) **Summary** Low-Energy Branch Main-Separator High-Energy Degrader Branch Beam Catchers Pre-Separator Degrader 2 BETTOOD : Production Target Ring Branch Focusing System 20 m


nc dipole

Driver

Accelerator

ES Scope



branch H

Assembly Units for ES

1) Target Area

iron shielding

1 target chamber

3 nc dipoles

5 nc multipoles

3 beam catchers

2) sc Magnets

7 sc short multiplets 13 sc long multiplets 13 standard sc dipoles 2 branched (Y) sc dipoles

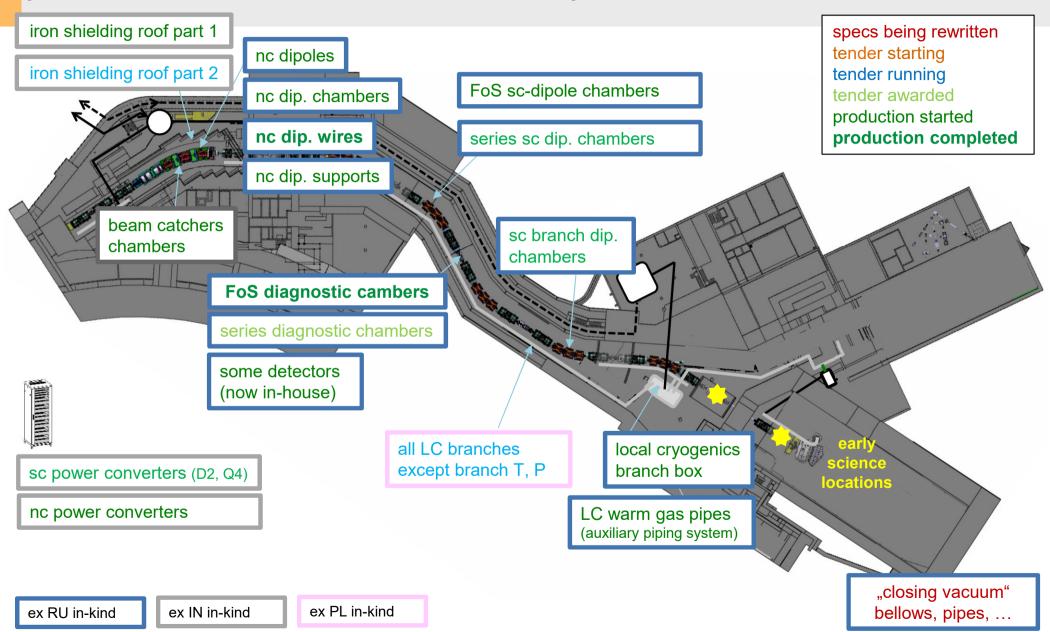
3) Local Cryogenics

1 branch box 3 BB transfer lines 45 feed boxes, 45 jumpers, 250 m transfer lines 1230 m auxiliary lines

4) Vacuum System

11 diagnostic chambers various beam pipes beam instrumentation

5) Racks (not in beam-tunnel)


Power Converters Control Racks

Plan-B Procurements (ex-Russian, ex-Indian, ex-Polish)

Data Date: 15/07/2024

Target Area Overview

GSI Helmholtzzen rum rum Schwerlonemorschung Gmbri

- 1. Magnetkryostat/-cryostate
- 2. Targetkammer/-chamber
- 3. Magnet (Linse/Lens)
- 4. Magnet (Linse/Lens)
- 5. Magnet (Ablenk~/Deflector)
- 6. Strahlfänger/Beamcatcher
- 7. Magnet (Ablenk~/Deflector)
- 8. Strahlfänger/Beamcatcher
- 9. Magnet (Ablenk~/Deflector)
- 10. Strahlfänger/Beamcatcher
- 11. Magnetkryostat/-cryostate
- 12. Magnetkryostat/-cryostate

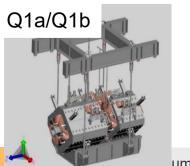
Installation of lateral iron shielding Q2/2025

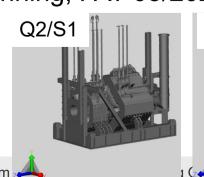
1st iron block: May 7, 2024

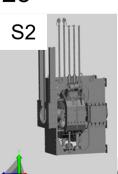
Target Area

NC magnets

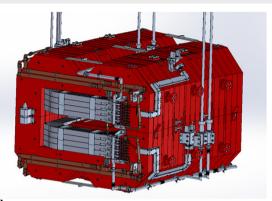
H. Leibrock, C. Mühle et al.




NC Dipoles (Ru re-procurement, 2 units):


- ✓ Contract signed (Sigmaphi, Fr), 08/2023
- ✓ MIC Cable (re-procured, nVent, Ca)
- ✓ Design phase / FDR completed
- Prototyping running
- FAT schedule: 05/2025 (D1), 10/2025 (D2)

NC multipoles (3 quads, 2 sext):

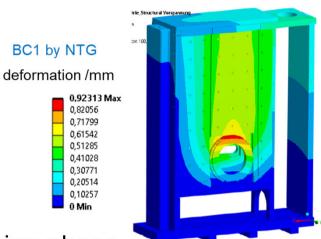

- ✓ Manufacturing (Buckley Systems, NZ)
- ✓ MIC Cable (procured, Hitachi, Jp)
- ✓ Design phase / FDR completed
- Batch 1: S2 assembly running, FAT 12/2025
- Batch 2: Q1a/Q1b & Q2/S1 production running, FAT 05/2025

Target Area

Component procurement

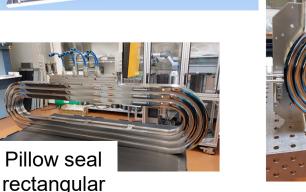
C. Karagiannis

B. R. Knöbel et al.

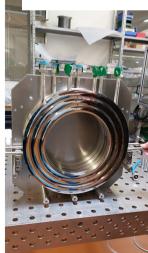


- Target chamber + Plugs: (Fantini)
 manufacturing ongoing, FAT 11/2024
- Beam catchers:

In-kind India: (Trident Ltd.)
BC3 built, FAT scheduled 10/2024
BC1 / BC2 FDR running


Plan B FAIR (only empty chambers):
revised design by NTG, finalizing design phase
planned delivery Q3/2025 (BC1) Q4/2025 (BC2)

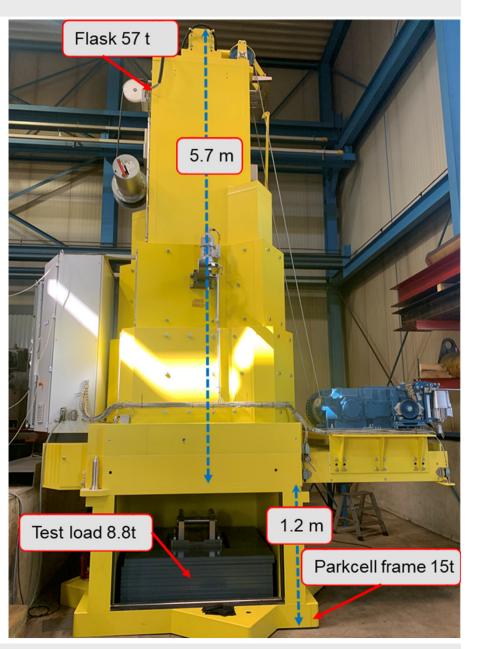
- Alignment supports: (Fantini), 8 pcs.
 manufacturing of FoS, last FAT end of 2024.
 - ➤ Two extra supports needed for sc multiplets, GSI-design, provider Fantini, deliverer: Q1/2025 long-lead items ordered in advance
- Pillow seals: (Mewasa, 3 types), FAT of FoS, many produced, last FAT Q4/2024
- Pillow-seal plugs: (Asturfeito),
 production running, FAT Q1/2025



Target Area Shielding Flask

F. Amjad H. Weick et al.

Control pannel



- Provider: Bilfinger Noell
- Project duration 2020→ 2024.
- ✓ FAT successfully completed Sep 2024
- Delivery planned for Nov 2024
- Equipped to handle 21 Super-FRS plugs
- Shielding up to 35 cm thick
- Designed to have safety redundancy
- Remotely operated using control desk

Vacuum System

(Ru re-procurement)

S. Purushotaman

N. Kurichiyanil et al.

1) Diagnostic chambers (11 + 2 chambers, ES)

• 2 FoS chambers produced by Pfeiffer (DE), Supple delivered; reprocurement & production ≈ 1year!

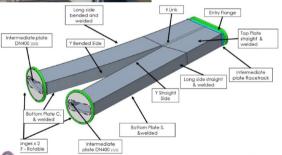
- FAIR tender for series ready to be awarded
- Planned delivery: Q3/2025 to Q2/2026

2) vacuum chambers for standard sc dipoles

- 2 FoS chambers (9,75°, 11°); Provider: VTP, Sp
 - ✓ FAT D2 chamber done, delivery in preparation
 - > FAT D3 chamber scheduled for 11/2024
- Series chambers awarded 09/2024; Provider: Fantini (It)
 - \triangleright low- μ_r stainless steel will be provided (in-house)
- Integration of chambers into dipoles during pre-assembly

3) 2 vacuum chambers for branched sc dipoles

- Provider: CNIM (Fr), awarded 06/2024
- design phase running
- planned delivery: Q1/2026


4) 3 vacuum chambers for nc dipoles (Ti alloy)

- Provider: CNIM Systèmes Industriels, Fr
- design phase completed, FDR 07/2024
- Production running; planned delivery: July 2025

FOS D2 chamber

branched chamber

nc dipole chamber

July 18, 2024

Beam Instrumentation

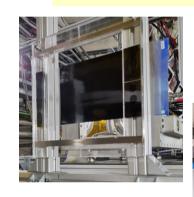
Finnish in-kind contributions

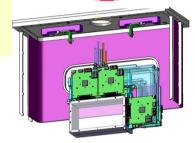
C. Nociforo, E. Rocco,

J. Galvis, B. Voss,

D. Urner, S. Udrea,

C. Caesar, et al.

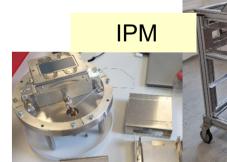


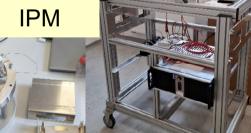

65K

MUSIC (energy-loss, GSI & Uni Jyvaskyla)

- ✓ FoS detector under test at GSI
- to be tested in 2025 with beam
- SEM Grid (profile monitor, HIP)
 - ✓ FDR in preparation
 - FoS delivery expected by 2024
- GEM-TPC (tracking, HIP)
 - ✓ FDR in preparation
- SciFiber (tracking, GSI plan B)
 - ✓ CDR approved
 - ✓ FoS under production
 - to be tested in 2025 with beam
- Position drive (HIP)
 - ✓ FDR in preparation
 - FoS units shipped to GSI for testing
- IPM (FAIR in-house)
 - dedicated chamber ordered
 - prototype build, beam test in 2025 with beam

Scintillating **Fibers**


FAIR.



FoS MUSIC

FoS Drive

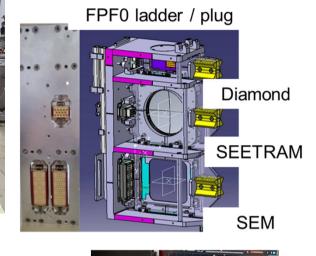
C. Nociforo, M. Czogalik, M. Alfonsi, T. Blatz

J. Galvis Tarquino et al.

PDC drive

Beam Instrumentation

- Particle Detector Combination (FAIR in-house)
 - FPF4 drive under test
 - ✓ o-ring test passed
 - FPF0 ladder under test
- Slit System (KVI)
 - ✓ all slits in-house, SAT series ongoing
- Drive control (Uni Chalmers)
 - ✓ FDR done (Q2/23)
 - to be procured
- Diamonds (FAIR in-house)
 - FPF0 FDR under review
 - Electronics/DAQ under test




- Plastic scintillator (FAIR in-house, 7 units)
 - ✓ FDR released
 - 2 FoS detectors under production in house
 - to be tested in 2025 with beam
 - system will replace ToF during ES
- Beam stopper (Fa. Axilon)
 - ✓ SAT released

SC Multiplets

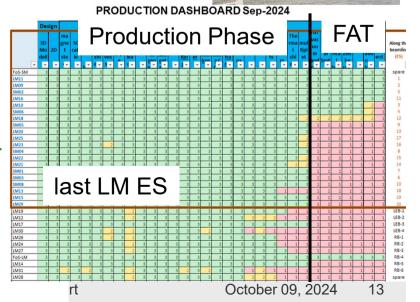
E.J. Cho, H. Müller et al.

Scope (ES):

- 7 short multiplets, 13 long multiplets
- up to 9 individual magnets in LM

Main characteristics:

- iron dominated, cold iron, warm pipe
- individual powering, I_{max} <300A


Provider:

ASG, Genova, It

Production Status:

- He leak in thermal shield circuit was detected during SAT of LM11 end 2023
 - root cause analysis and repair (LM11)
 - GSI-CERN-ASG Task Force established
 - brazing quality control by x-ray
- LM11: re-FAT 04/2024, successfully re-SAT 06/2024
 - pre-assembly running at GSI
- apply repair-method to all multiplets
- overall manufacturing status ES: 92%
- FAT of last ES multiplet scheduled for Q1/2026

SC Dipoles

H. Müller, E.J. Cho et al. **CEA Saclay**

New induction brazing method and in-situ control

Scope (ES):

• D2: 3 x 11°

• D3: 10 x 9.75°

branched dipole, 2 x 9.75°

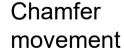
Main characteristics:

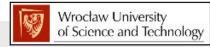
- iron dominated, warm iron. large aperture
- individual powering, I_{max} <300A

Provider:

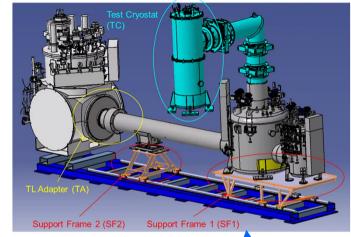
Elytt, Bilbao, Sp

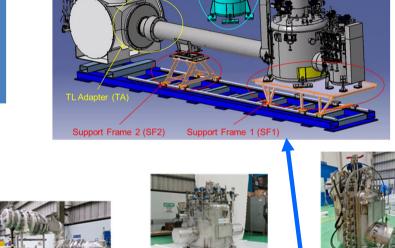
Production Status:

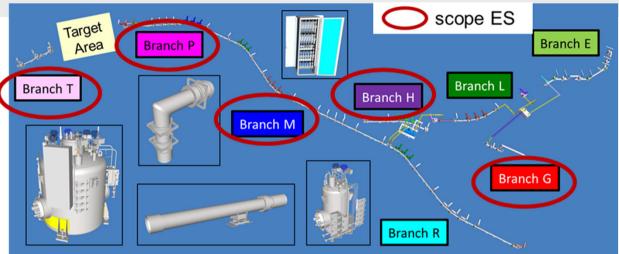

- ✓ New brazing method developed (by induction) + x-ray
- ✓ FAT of 3rd D3 05/2025
- SAT at CERN running (includes field qualification)
 - ✓ field quality within specification
 - chamfer movement observed; fixation method defined;
- Series production running
 - new brazing method applied to all dipoles
 - > new chamfer fixation method applied to all dipoles
 - > this year still shipment of 2 dipoles to CERN scheduled



Local Cryogenics (Branches)


- F. Wamers.
- Y. Xiang,
- D. Schad, et al.





FoS Test Facility

T-branch

- In-kind Partner: Poland
- Overall system design by WUST
- Component design by WUST

T-Branch

- Provider: INOX, Ind
- FAT done, delivery: on ship → arrival 11/2024
- FoS test @ STF in preparation →installation

P- Branch (PL in-kind)

WUST tender to be awarded

M, H, G Branches (ex PI, now FAIR)

FAIR tender running; award expected Q4/2024

Local Cryogenics (Utilities)

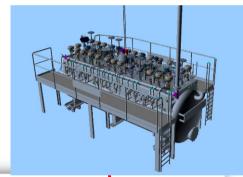
F. Wamers,

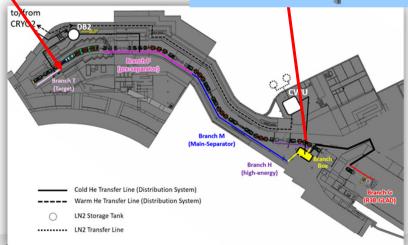
Y. Xiang,

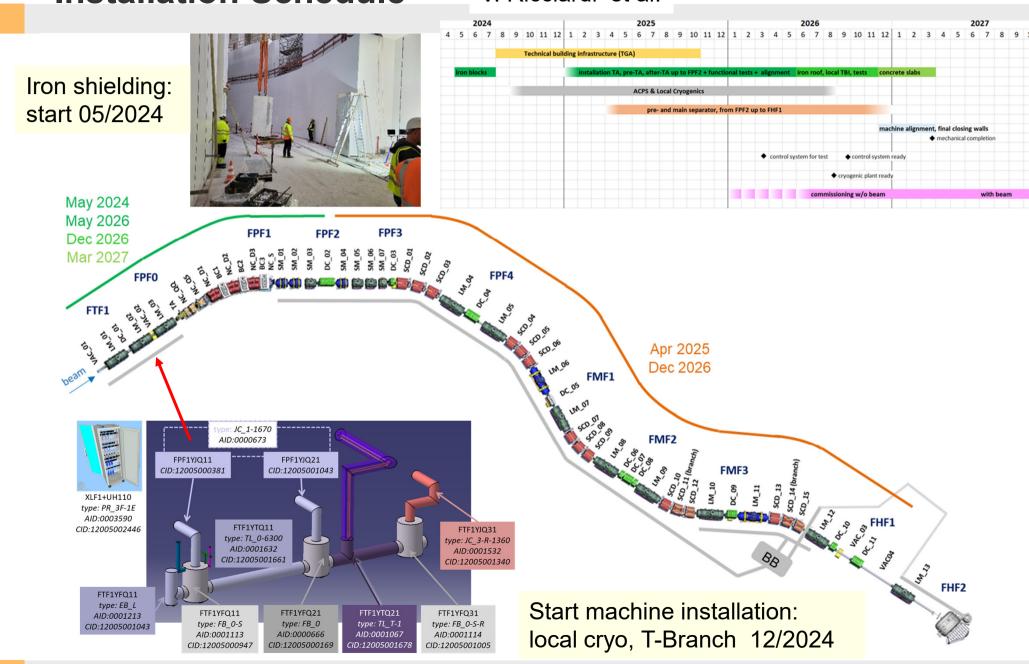
D. Schad, et al.

Branch Box (ex Ru, Plan-B)

- central local cryo control facility
 45 cold valves, high operational flexibility
 - ~15.5 tons, mostly stainless steel
 - ~ 2.5 m diameter, ~ 6.7 m length
- Provider: Demaco NL
- Production running; delivery Feb. 2025
- start installation: March 2025

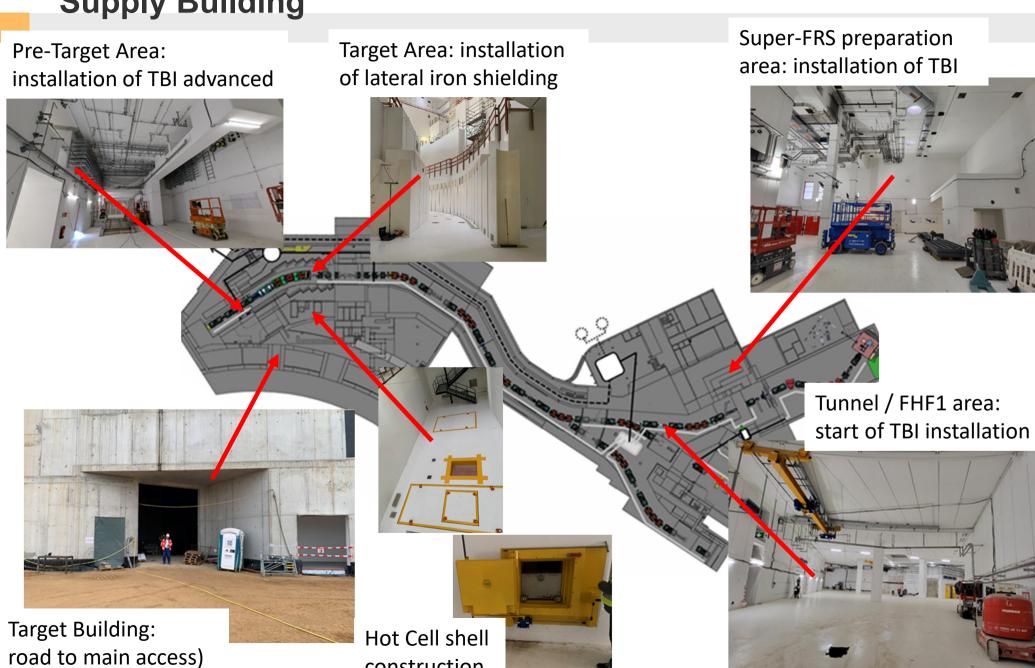

ACPS (ex Ru, Plan-B)


- Auxiliary Cryogenics Piping System:
 Multipurpose Return (MPL)
 Warm GHe Supply (WGS)
 Current-Leads Return (CGR)
- Provider: Demaco NL
- Production running; delivery beanch wise
- √ installation T-Branch running now



- K. Knie,
- H. Marcocelli,
- V. Ricciardi et al.

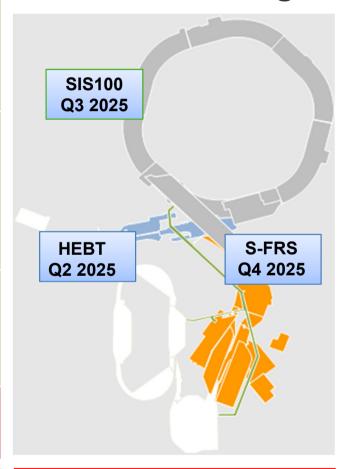
Installation Schedule



Impression Tunnel & Supply Building

M. M. Schmidt,

construction


Commissioning phases for ACC

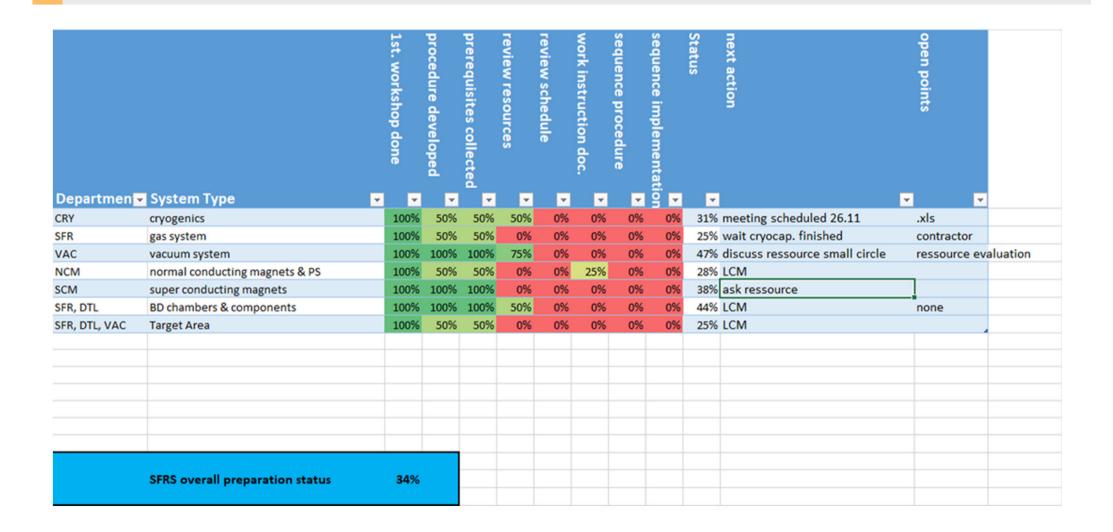
inst.		#	commissioning stage	accelerators & transfer lines	detectors			
Commissioning without Beam		1 (M??)	local HW- commissioning	 local system tests in tunnel and supply areas Special cable connections by system experts Control system not needed (only in limited aspects) 	 single detector tests tests of individual components install. service & controls 			
		2 (M??)	remote & system commissioning	 single system test (vertical system integration test) remote testing from MCR (sequences, checklists) control system integration of the system and timing is needed 	 system tests (with HV, gas,) pre-test of DAQ system local control 			
		3 (M11)	integration	 (3.1) multi system tests & (3.2) full Dry-Runs control system and accelerator models for pilot beam scenarios fully available 	 full detector test and DAQ using cosmics 			
am Commissioning		4 (M12)	pilot beam commissioning	 commissioning with pilot beam 	commissioning with pilot beam handover to operations			
Cor								
am		• operation with PCP-beam respectively status quo beam						

development towards nominal intensities

commissioning of advanced systems

Start of ACC Commissioning

Action 5 (commissioning/early operation pre-budget 2024)


commission &

operation

Status Commissioning

Summary

- All major ex-Ru in-kind mitigated!
- Non-conformities of sc multiplets cured; first repaired multiplets successfully retested; reparation and production of remaining multiplets running in parallel; back on track
- Main non-conformity on TS leakage of sc dipoles cured; however, additional nonconformity popped-up during SAT; mitigation is implemented right now
- Few new mitigation action started, like FAIR procurement of part of local cryogenic branches or parallel development of alternative tracking detectors for ES
- Installation of TBI started (advances in pre-target area)
- First component installation done (lateral iron shielding, ACPS in pre-target area);
 installation of local-cryo T-branch scheduled to start still in 2024
- Commissioning planning started; sub-systems defined and kick-off LCMs done

Thank you for you attention!