Computing Session

Helmholtz Institute Mainz

DPM improvements: A proposal/request

S. Pflüger

Helmholtz Institute Mainz

December 11, 2012

・ロト・4目・4目・4目・4ロト

DPM ELASTIC ONLY + FIT AT $P_{lab} = 1.5 \,\text{GeV}$

PROBLEM + PROPOSAL

Current DPM

- \odot only floats and ints (4 bytes)
 - discretization of random numbers is visible
 - $\,\triangleright\,\,$ larger machine imprecision \rightarrow prone to numerical instabilities
- \odot simple trapezoidal integration of elastic cross sections (e.g. for 1.5 GeV : Δ*t* ≈ 0.2 × 10⁻⁴ MeV²/c² division width)

 \rightarrow luminosity error of 4% (design goal \leq 3%)

Proposal

- use doubles and long ints (8 bytes)
- $\odot\,$ non equidistant sampling and simpsons rule integration

INFORMATIONS

Specs of following plots

- generated both elastic and inelastic events
- $\odot \ \theta_{min} = 0.1^{\circ} \approx 1.75 \,\mathrm{mrad}$ lower acceptance bound of LMD
- distributions show all generated particles

SWITCHING TO DOUBLE PRECISION

COMPARISON AT LMD RANGE: OLD VS. NEW

Comparison at Full θ Range: Old VS. New

NEW DPM ELASTIC ONLY + FIT AT $P_{lab} = 1.5 \,\text{GeV}$

CHANGES IN NUMBERS

	1.5 GeV				15.0 GeV			
$\theta_{\min} [^{\circ}]$	$\sigma_{\rm col}^{\rm old}$ [mb]	σ_{col}^{new} [mb]	diff [mb]	rel. diff. [%]	$\sigma_{\rm col}^{\rm old}$ [mb]	$\sigma_{\rm col}^{\rm new}$ [mb]	diff [mb]	rel. diff. [%]
0.1	83.06	52.84	30.21	57.17	0.37	0.36	$9.16\cdot 10^{-3}$	2.50
0.2	13.86	13.187	0.673	5.10	$8.41\cdot 10^{-2}$	$8.40\cdot 10^{-2}$	$1.44\cdot 10^{-4}$	0.17
0.3	5.90	5.845	0.061	1.04	$3.33\cdot 10^{-2}$	$3.33\cdot 10^{-2}$	$1.19\cdot 10^{-5}$	0.03
0.4	3.28	3.276	0.010	0.30	$1.64\cdot 10^{-2}$	$1.64\cdot 10^{-2}$	$1.85\cdot 10^{-6}$	0.01
0.5	2.09	2.088	0.002	0.09	$9.04\cdot 10^{-3}$	$9.04\cdot 10^{-3}$	$3.79\cdot 10^{-7}$	$4.19\cdot 10^{-3}$
0.6	1.44	1.443	$8.24\cdot 10^{-4}$	0.05	$5.32\cdot 10^{-3}$	$5.32\cdot 10^{-3}$	$8.21\cdot 10^{-8}$	$1.54\cdot 10^{-3}$
0.7	1.05	1.05	$2.37\cdot 10^{-4}$	0.02	$3.27\cdot 10^{-3}$	$3.27\cdot 10^{-3}$	$1.36\cdot 10^{-8}$	$4.15\cdot 10^{-4}$
0.8	0.803	0.803	$8.96\cdot 10^{-5}$	0.01	$2.07\cdot 10^{-3}$	$2.07\cdot 10^{-3}$	$-2.12\cdot10^{-8}$	$-1.02\cdot10^{-3}$
0.9	0.630	0.630	$2.26\cdot 10^{-6}$	$0.35\cdot 10^{-3}$	$1.34\cdot 10^{-3}$	$1.34\cdot 10^{-3}$	$-1.48\cdot10^{-8}$	$-1.10\cdot10^{-3}$
1.0	0.507	0.507	$3.85\cdot 10^{-5}$	$7.59\cdot 10^{-3}$	$8.83\cdot 10^{-4}$	$8.83\cdot 10^{-4}$	$-7.89\cdot10^{-9}$	$-8.84\cdot10^{-4}$

 \odot simulations with $p_{\text{lab}} = 1.5 \text{ GeV/c}$ not effected for $\theta_{\min} > 0.3^{\circ}$

 \odot simulations with $p_{\text{lab}} = 15 \text{ GeV/c}$ not effected for $\theta_{\min} > 0.1^{\circ}$

CONCLUSIONS

Summary

- \odot DPM improvements \rightarrow systematic uncertainty reduced by 4%
- no numerical oscillations and more stable integral calculations
- all other PANDA groups: $p_p \approx 100 \,\text{MeV}/c$
 - \triangleright 1.5 GeV : $\theta_{\min} \approx 4^{\circ}$
 - \triangleright 15 GeV : $\theta_{\min} \approx 0.4^{\circ}$
 - \triangleright well above previous thresholds \rightarrow NO changes!

CONCLUSIONS

Request

- implement both of the proposed changes/improvements
 - switch to double precision: new (8 byte) random gen. and compilation flags
 - -fdefault-real-8 -fdefault-double-8 -fdefault-integer-8
 - implement more accurate integrals algorithms (Aida semi-fixed this)

Thanks for Your Attention!

ELASTIC CROSS SECTION

$$\frac{d\sigma}{dt} = \frac{d\sigma_{C}}{dt} + \frac{d\sigma_{int}}{dt} + \frac{d\sigma_{H}}{dt}$$
with
$$\frac{d\sigma_{C}}{dt} = \frac{4\pi\alpha_{EM}^{2}G^{4}(t)}{\beta^{2}t^{2}}$$

$$\frac{d\sigma_{int}}{dt} = \frac{\alpha_{EM}\sigma_{Total}}{\beta|t|}G^{2}(t)e^{\frac{1}{2}Bt}(\rho cos(\delta) + sin(\delta))$$

$$\frac{d\sigma_{H}}{dt} = A_{1} \cdot \left[e^{t/2t_{1}} - A_{2} \cdot e^{t/2t_{2}}\right]^{2} + A_{3} \cdot e^{t/t_{2}}$$