

A new method to improve the electron momentum reconstruction with PANDARoot

Binsong MA Institut de Physique Nucléaire, ORSAY Collaboration meeting at GSI, 11/12/2012

Outline

- Electron reconstruction with Kalman Filter and its problem.
- Our proposal: use the measured Bremsstrahlung photon energy in EMC to improve the electron momentum reconstruction with Kalman Filter.
- The algorithm to select the photon from the tracking system region and the validation for different momenta and polar angles
- The limit of the method.

Problem of e⁻ reconstruction with Kalman Filter

- Track follower of Kalman Filter(KF): GEANE
- GEANE calculates the mean electron energy loss and the rms, but Bremsstrahlung is highly non-gaussian!

So, KF can not handle the problem correctly

Reconstruction with $\boldsymbol{\mu}$ hypothesis: no Bremsstrahlung in GEANE

But, the angular reconstruction at the target is good.

Photon emission before DIRC(MC)

The problem of momentum resolution is due to the emission of photon?

 $10^5 e^- 1 \text{ GeV/c}$, $\vartheta = 90^\circ$, $\phi = 120^\circ$, μ hypothesis, E $\gamma > 1 \text{MeV}$, reconstruction with KF

INSTITUT DE PHYSIQUE NUCLÉAIRE

ORSAY

Our proposal: use the γ energy from EMC

• Handle the problem event by event

• If a γ is emitted before the DIRC, momentum of the electron at the exit of tracking system: (p_e)_{target} ¥λ $|P_{out}| \approx |P_{MC}| - |P_{\gamma}|$ (γ is emitted in the same Pout direction as electron) photon erhission ectron track •the KF with μ hypothesis (i.e. no Bremsstrahlung) gives a recontructed momentum $|P_{KF}|$ Calorimeter electron direction •we check that P_{KF}≈P_{out} $(\phi_e)_{target}$ •Searching associated the Bremsstrahlung γs in **MVD** ST DIRC the EMC.(ΣP_{γ}) **Tracking system**

• calculate : $|\mathbf{p}_{e}|_{target} = |\mathbf{p}_{KF}| + \Sigma |\mathbf{p}_{\gamma(i)}|$

INSTITUT DE PHYSIQUE NUCLÉAIRE

Compare Pout and PKF

The KF reconstructs the momentum after γ emission (after point E, not at the target) with a good resolution. This is due to the fact that most γ emitted close to target(MVD) \rightarrow Adding the γ energy should improve the resolution of momentum at the target?

XLIII PANDA Collabration meeting, GSI, 10-

Bremsstrahlung γ selection algorithm

γ_{in} selection algorithm

→ electron/photon separation:
Using the information from PidCandidate

 \rightarrow γ_{out} and γ_{in} separation : Using Δθ and Δφ: the different between photon angle and the electron initial angle.

 $\Delta \theta = \theta_{\gamma} - \theta_{e_rec}$ $\Delta \phi = \phi_{\nu} - \phi_{e_rec}$

Ex: photon emitted in the target:

 $\Delta \theta = \Delta \phi = 0^{\circ}$ at the end of the tracking system: $\Delta \theta = 0^{\circ}$ $\Delta \phi_{max} = 2 \arcsin(0.12/\text{Pt})$

The differents $\Delta \theta$ and $\Delta \phi$ distribution for $\gamma_{out}\, and \,\, \gamma_{in}$

10⁵ e⁻ P_t=1GeV/c, ϑ =[5°,140°], φ=[0°,360°], μ hypothesis

Photons from DIRC and EMC

Photons from tracking system

So, we can put cuts for $\Delta\theta$ and $\Delta\phi$ to select the photons from tracking system.

 $\begin{array}{lll} \mbox{Cuts}: & |\Delta\theta| < 2^{\circ} \\ & -1^{\circ} < \Delta\phi & < 2 \mbox{arcsin}(0.12/\mbox{Pt}). \mbox{ (geometry calculation, limit of the end of} \\ & & (14^{\circ}) & & \mbox{the tracking system region} \end{array}$

XLIII PANDA Collabration meeting, GSI, 10-

14 Dec 2012

The effect of this method for the resolution ($P_t=1GeV/c$)

14 Dec 2012

 $10^5 e^- P_t = 0.5 \text{GeV/c}, \ \vartheta = [5^\circ, 140^\circ], \ \varphi = [0^\circ, 360^\circ], \ \mu \text{ hypothesis}$

INSTITUT DE PHYSIQUE NUCLÉAIRE

ORSAY

14 Dec 2012

The effect of this method for the resolution (P_t=2GeV/c)

10⁵ e⁻ P_t=2GeV/c, ϑ =[5°,140°], φ=[0°,360°], μ hypothesis

For $P_t = 2GeV/c$, this method does not work!

The limits of the method

the efficiency of this method will be very low at the high transverse momentum region(above 2GeV/c)

Conclusion

- Adding the photon energy from EMC to the reconstructed energy of electron reduces the tail of resolution peak.
- This method is valid for all range of θ and ϕ but only in low momentum region.
 - $(P_t \le 1GeV/c))$
- On-going work: improve the efficiency of the method

Backup slides

Electron resolution at different angles

Reconstruction with $\boldsymbol{\mu}$ hypothesis: no Bremsstrahlung in GEANE

theta(deg)	Sigma(%)	Evts inside 2sigma(%)
30	2.56	35.5
60	2.08	69.3
90	1.76	71.1

 $R = (P_{MC} - P_{rec})/P_{MC}$

XLIII PANDA Collabration meeting,GSI, 10-14 Dec 2012

EVALUATE: e^{-}/μ^{-} momentum reconstruction with KF

P = 1GeV/c, $\vartheta = 90^{\circ}$, $\phi = 120^{\circ}$.

	μ (μ hypo)	e⁻ (e⁻ hypo)	e⁻ (µ hypo)
Mean(gauss)	<0.1%	-0.32%	0.37%
Sigma	1.6%	4.6%	1.8%

e⁻ hypothesis: Bremsstrahlung taken into account in GEANE. μ hypothesis: only multi scattering and ionization in GEANE

 e^{-} with e^{-} hypothesis: momentum resolution very bad (σ =4.6%). e^{-} with μ hypothesis: better result but with large tails.

$e^{\scriptscriptstyle -}$ and $\mu^{\scriptscriptstyle -}$ angular resolutions

P=1GeV/c, ϑ =90°, ϕ =120°

	σ(φ) (deg)	σ(ϑ) (deg)
μ^{-} (μ hypothesis)	0.089	0.066
e ⁻ (μ hypothesis)	0.10	0.068
e ⁻ (e ⁻ hypothesis)	0.11	0.068

Good angular resolution for $e^{\text{-}}$ with μ hypothesis.

Tiny worsening of angular resolution for electron.

Small shifts: 0.03 deg. This is due to the fact that photons are emitted in the direction of the electron.