Pbar P -> e+ e- $(\pi^+\pi^-)$ analysis with PANDAroot

Alaa Dbeyssi

IPN Orsay, France

PANDA XLIII. Collaboration Meeting-GSI 11/12/2012

Electromagnetic channels : Time-like proton form factors measurment

Hadronic vertex is parametrized in terms of two electromagnetic FFs

Angular distribution \rightarrow modulus of $|G_M|$ and $|G_E|$

Main Background : $\overline{p} + p \rightarrow \pi^+ + \pi^-$

$$\frac{\sigma(\mathbf{\pi}^+\mathbf{\pi}^-)}{\sigma(e^+e^-)} \sim 10^6$$

Rejection factor > 10^{-8} is needed

Outline

e+e- reconstruction efficiency & $\pi^+\pi^-$ background suppression

Based on :

PID (EMC+STT) analysis and kinematical study

Standard chain of reconstruction

Simulation done on the grid of the IPNO (D. Marchand and C. Diarra)

Generators:

- $\overline{p} + p -> e^+ + e^-$ (PHSP). $\overline{p} + p -> \pi^+ + \pi^-$ (PHSP).
- $p=3.3 \text{ GeV/c} (s=8.21 [GeV/c]^2)$,
- Full range in θ and ϕ angles.
- $N(e^+e^-) = 10^6_-$ events.
- N($\pi^{+}\pi^{-}$) ~10⁷ events.
- No radiative corrections (noPhotos).

Principal points of analysis :

Selected events 1: Reconstructed events which satisfied the conditions:

- > One positive and one negative particle per event.
- Best back to back pair was selected in the multi (positive or negative) particle events.

Selected Events 2:

After Cuts on the PID probabilities (Naive Bayesian Method for EMC & STT) and on kinematics.

Naive Bayesian Method

2 particles hypothesis : electron and pion. \Box EMC :

3 variables : E/p, log (Lat), log (Z53)

"Convolution" of probabilities via likelihood factors:

P(e EMC)	P(e var ₁)	P(e var ₂)	*	
1-P(e EMC)	1-P(e var ₁)	1-P(e var ₂)		

STT:

Parametrization of truncated mean dE/dx up to 5 GeV/c.

Ronald Kunne

Why PHSP ?

PIONS: PANDARoot Event Generator (Mainz PANDA group) 2.43<p<5.0 GeV: No data are available. Extrapolation of Regge theory approach from high energy limit.

[J. Van de Wiele and S. Ong, Eur. Phys. J. A46 (2010) 291]

Electrons : Reconstructed events

Electron and positron PID using EMC and STT

Prob. for e^+ to be identified as e^+

Prob. of e to be identified as e

Method does not provide decision, PID distributed equally to both particles

PIONS: Reconstructed events

PHSP: Reconstructed events (84%),

PION PID Using EMC and STT

Prob. for π^+ to be identified as e^+

Prob. for π^{-} to be identified as e

Cuts • PID > 99%

- Nb. of fired crystals in EMC >5
- $175^{\circ} < |\phi 1 \phi 2| < 185^{\circ}$
- $179.8^{\circ} < (\theta 1 + \theta 2) (CM) < 181^{\circ}$

Bremsstrahlung leaves $\boldsymbol{\theta}$ and $\boldsymbol{\phi}$ intact

Angle ϕ : reduces multi-pion or multi-electron events. Angle θ in CM : Electron/PION separation.

PID Using EMC and STT :

Prob. for a particle to be identified as e⁺

Prob. for a particle to be identified as e

Background: 37 events [EMC only 87 events]

Cut2: Nb. Of fired Crystals in EMC >5

Cut (PID, Nb. Crystals) :

Signal : 71 % Background: 26 events

Cut on ϕ distribution

Cut: 175 < |**φ**1 – **φ**2| < 180 *degree* Cut (PID, nb. Crystals, **φ**) : Signal : 70% Background: 8 events

Theta Distribution (CM) assuming Electron particle: back-to-back cut (179.8-181 degree)

Cut (PID,Nb. Crystals,**φ**,**θ**cm) :

Signal : 61% Background: zero pion

Resolution on θ angle: Electron Sigma=0.087^o 10⁵ 10⁴ Event PIONS 10⁶ = 10³ 10⁵ Event 0.2 0.4 -0.4 -0.2 0 $\theta_{e}^{\text{Rec}} \text{-} \theta_{e}^{\text{MC}}$

Resolution <0.2°

18

Angular distribution after all the cuts

Electrons

Result

- $N(e^+e^-) = 10^6$ events.
- N($\pi^{+}\pi^{-}$) ~10⁷ events.

10⁻⁷ rejection factor of pions61% signal efficiency

Another way to cut on probabilities:

Conclusion and perspective

- Efficiency 61% for a pion rejection factor ~ 10^{-7} .
- Estimation (PID): Eff. 26 % for ~ 10⁻⁸ : (This value can be enhanced using kinematical cuts).

Next steps :

- Simulation with the new version of PANDARoot : Dirc, Disc, EMC, ...
- High Statistics, simulation for different values of «s» :

Evaluation of systematic and statistical errors.

Thank you for your attention

This work was done in collaboration with

Gosia Gumberidze and PANDA Orsay team.

$\begin{array}{c} & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 2 \\ & 4 \\ & 6 \\ & 8 \\ & 10 \\$

Prob. (EMC) vs p for e' to be identified as e'

(EMC+STT) PID

10⁵

25

Electrons

Before PID cut

E_{raw}/p vs. p

Electrons

Before PID cut

PIONS

Before PID cut

PIONS

Before PID cut

29