pbar-p & pbar-nitrogen simulations for FTS

Jacek Biernat

Jagiellonian University

Menu:

- Simulation done for FT1, FT3 and FT5;
- Different targets used (hydrogen & nitrogen)
- Setting: Beam momentum at 15 GeV/c; Reaction rate 2 x 10⁷;
- Three types of geometry included, the real one and, the so called "dummy geometry" (three, cube like structures were placed instead FT(1,3,5), and also no beam pipe included);

Counts per straw

Blue - FT1; Red- FT3; Green- FT5;

With beam pipe

With out beam pipe

Pbar-N (with beam pipe)

Hits per event with full geometry

With beam pipe

Without beam pipe

MC Track multiplicity in FT1

•Blue- all particle & Green- primary particle only

With beam pipe

With out beam pipe

pbar-N

Distributions of counts/cm² vs radius

So called "dummy" geometry

Comparing geometries for FT5

Full with pipe

full with out pipe

dummy

Production of seconderies

Full geometry with & without pipe The Z for : FT1 = 294,FT3 = 395, FTH5 = 607

FT5

No pipe

Backup slides

counts/cm^2/s vs radiusMomentum acceptance

Distribution of momenta of particles pbar-p

• The blue line include particle emission in in angular 10 degree and in horizontal 5 degree;

Distribution of momenta of particles

•pbar-N

Counts/cm²/s vs radius

"dummy" geometry

