SCATTERING PARAMETERS FROM PRODUCTION REACTIONS

November 7, 2024 | Christoph Hanhart | IKP/IAS Forschungszentrum Jülich

Member of the Helmholtz Association

MOTIVATION

A systematic study of final state interaction effects allows one to

n investigate the interaction of unstable particles for very small relative momenta.

E.g. hyperon-nucleon and hyperon-hyperon scattering lengths, addressing

- \rightarrow Flavor–*SU*(3) breaking pattern?
- \rightarrow Structure of neutron stars?
- nature of particles: bound system vs. elementary state

 \rightarrow encoded in effective range parameters

■ study meson–nucleus interactions: Bound states or not?

DIFFERENT OPTIONS

High energies =⇒ Near Threshold =⇒

(near) elastic scattering production from point source

DIFFERENT OPTIONS

In any case: Two methods with very different systematics

ABOUT LARGE MOMENTUM TRANSFER

Final state interaction

strongly energy dependent

sensitive to interactions of all particles: subsystems; for more than 2 final Dalitz plot analysis!

Production operator

weakly energy dependent;

selection rules!

(isospin, parity, Pauli principle ...)

 \rightarrow $d\sigma \propto |fM|^2$, where $M \simeq const.$ and $f = f[\Psi_{ij}].$

SCALES

Variation of *M* controlled by typical momentum transfer *p^t* Variation of *f* relevant momentum range of subsystem *p* ′

For $p' \ll p_t$ FSI minimally distorted

Use initial momentum at threshold *p* for p_t ; 1/*a* for *p*^{*t*}

Examples: for $a \sim 1$ fm in proton-proton collisions:

 $|\vec{\rho}| = \sqrt{M_p m_x + m_x^2/4}$ (m_x = mass produced=($\sum_f M_f$) – 2 M_p)

 $p p \to p K^+ \Lambda \qquad \Rightarrow \ |\vec{p}\,| \ \sim \ \ 860 \ {\rm MeV} \Rightarrow \ (\rho'/\rho)^2 \sim 0.05$

 $p p \to \mathcal{K}^0 \mathcal{K}^0 \Sigma^+ \Sigma^+ \ \Rightarrow \ |\vec{p}\,| \ \sim$ 1400 MeV $\Rightarrow \ (\rho'/\rho)^2 \sim$ 0.02

Expansion parameter decreases as system produced gets heavier!

GENERALITIES II: PROD. VS. SCATTERING

GENERALITIES II: PROD. VS. SCATTERING

With more modern experiment F. Hauenstein et al. [COSY-TOF], PRC95(2017)034001

ELASTIC INTERACTIONS

We see that production and scattering are related, but not equal Goal:

reliable extraction of scattering parameters for unstable particles particles from production reactions with large momentum transfer

This demands:

- **Error estimation**
	- Residual effect of production operator
	- **Effects of resonances**
	- **Effects of inelastic channels**
- **Proper theoretical framework**

 \Rightarrow Use dispersion relations!

DISPERSION INTEGRAL I

$$
A(s, t, m^2) = \underbrace{\frac{1}{\pi} \int_{-\infty}^{\tilde{m}^2} \frac{D(s, t, m'^2)}{m'^2 - m^2} dm'^2}_{\text{left–hand cut:production}} + \underbrace{\frac{1}{\pi} \int_{m_0^2}^{\infty} \frac{D(s, t, m'^2)}{m'^2 - m^2} dm'^2}_{\text{right–hand cut:FSI}},
$$

where m_0 =production threshold, \tilde{m} =start of left-hand cut and $D(s, t, m^2) = \text{Disc}(A(s, t, m^2))$ with

$$
D(s,t,m^2>m_0^2) = \sqrt{\frac{T}{\frac{T}{M}}} + \sqrt{\frac{T}{\frac{T}{M}}} = ip^*AT_{on-shell}^*
$$

Member of the Helmholtz Association Slide 10 22

DISPERSION INTEGRAL II

For this equation a solution exists:

$$
A(s, t, m2) = \exp \left[\frac{1}{\pi} \int_{m_0^2}^{\infty} \frac{\delta(m'^2)}{m'^2 - m^2 - i0} dm'^2 \right] \Phi(s, t, m^2),
$$

- **large momentum transfer** $\rightarrow \Phi$ is at most weakly m^2 dependent. \implies included into uncertainty estimate
- The FSI effect in terms of the (elastic) scattering phaseshift.

The factor can be interpreted as wavevfunction at the origin (inverse Jost function).

[⇒] large *m'* region into uncertainty estimate

FSI enhancement \leftrightarrow elastic phase-shift

THREE STRATEGIES

Three different strategies to proceed:

1 Assume that phaseshifts are given by effective range expansion; *p* ′ ctg(δ(*m*²)) = 1/*a* + (1/2)*rp*′ ² (sign!) ⇒

$$
A(m^2) = \frac{(p'^2 + \alpha^2)r/2}{1/a + (r/2)p'^2 - ip'} \Phi(m^2) ,
$$

$$
\alpha = 1/r(1+\sqrt{1+2r/a})
$$
 (Jost–function method)

Sibirtsev et al. (1996, 2004), Shyam et al. (2001), ...

2 Ignore numerator (*Watson method***)** Goldberger, Watson 1964

³ Invert the equation and express phaseshifts through observables Geshkenbein (1969) **and restrict integration range! (Integral)** Gasparyan et al. (2004)ff

This is the most systematic approach in line with goal

SCATTERING LENGTH

It is possible to invert the Omnes-function: Geshkenbein (1969), Gasparyan et al. (2004)

$$
\delta_{S}(m^{2}) = -\frac{1}{2\pi} \int_{m_{0}^{2}}^{m_{max}^{2}} \frac{dm'^{2}}{m'^{2}-m^{2}} \sqrt{\frac{(m_{max}^{2}-m^{2})(m^{2}-m_{0}^{2})}{(m_{max}^{2}-m'^{2})(m'^{2}-m_{0}^{2})}} \log \left\{\frac{1}{p'}\left(\frac{d^{2}\sigma_{S}}{dm'^{2}dt}\right)\right\}
$$

 $\delta \text{ with } \lim_{m^2 \to m_0^2} \delta_S(\textbf{s}) = a_S p(\textbf{s})$ and S denoting a specified spin state

we chose: $\epsilon_{\sf max} = m_{\sf max} - m_0 \simeq 1/(2\mu a^2) \approx$ 40 MeV for a \sim 1 fm

Estimates for uncertainties: $\delta a^{(th)} = \delta a^{(lhc)} + \delta a^{m_{max}} \sim 0.3$ fm since

$$
\begin{array}{rcl}\n\left|\delta a^{m_{max}}\right| &=& \displaystyle\frac{2}{\pi p'_{max}}\left|\int_0^\infty \frac{\delta(y)dy}{(1+y^2)^{(3/2)}}\right| \leq \frac{2}{\pi p'_{max}}\left|\delta_{max}\right| \sim 0.2 \text{ fm} \\
\delta a^{(lhc)} & \sim & \displaystyle\left(p'_{max}/p^2\right) \sim 0.05 \text{ fm}\n\end{array}
$$

using $\delta_{max}=$ 0.4 rad (for ΛN - see next pages) and $p'\sim$ 1/a

TESTING THE METHOD

We want to test the dispersive method

 \implies Can only be done if we know true parameters

Our strategy:

- Generate pseudo data for *d*σ/*dm*² for various models for Λ*N* (and *NN*)
- **Extract scattering length.**
- Compare to exact value.

Note: any working method should work for any realistic model

We use $S = 0$ & $S = 1$ for *YN* from (where in green: scattering lengths in fm) NSC97a (0.73,2.13), NSC97f (2.59,1.69), Jülich ('94) (1.02,-1.89)

TESTING THE DISPERSIVE METHOD

Calculations for production operator with π and K exchange!

COMPARISON OF METHODS

Pointlike production

EFFECTIVE RANGE

=⇒ enters as *a* 2 ((2/3)*a* − *re*)

$a_{\Lambda p}$ FROM $p p \to p K \Lambda$ Fig. 1. However, the enhancement is clearly visible in the

F. Hauenstein et al. [COSY-TOF], PRC95(2017)034001

 S =1 and S =0 possible in final state with unknown relative weight

Unpolarised data give access only to effective scattering length a_{eff}

Gasparyan, Haidenbauer, CH PRC72(2005)034006

Procedure: Fit $m_{\rho\Lambda}$ spectrum with $\exp\{ \textit{\textbf{C}}_{0}+\textit{\textbf{C}}_{1}/(\textit{\textbf{m}}_{\rho\Lambda}^{2}-\textit{\textbf{C}}_{2})\},$ then

ciency. The red arrows indicate the region of the *N* thresholds. 034001-2 reconstruction efficiency (AC). The upper limit of the fit range is Fig. 5) and its continuation over the whole spectrum is shown by the solid (red) line. The vertical dash-dotted (blue) line indicates the lower *N* threshold (*n*+). the invariant mass spectrum. wide bins of *mpa*eff= *C*¹ 2 s *m*² 0 (*m*² *max*−*m*² 0) *mpm*Λ(*m*² *max*−*C*2)(*m*² ⁰−*C*2) 3 =⇒ −1.38⁺0.⁰⁴ [−]0.⁰⁵ stat.±0.22syst.±0.3theo. fm

Member of the Helmholtz Association

Slide 18122

SPIN TRIPLET $a_{\Lambda p}$ **FROM** $\vec{p}p \to pK\Lambda$

F. Hauenstein et al. [COSY-TOF], PRC95(2017)034001

Spin=1 can be isolated from analysing power Gasparyan, Haidenbauer, CH PRC72(2005)034006

 γ^2 / NDF = 0.75 0.2 $-0.143 + 0.005$ kaon analyzing power $\mathbf{.036} \pm \mathbf{0.004}$ -0.1 $-0.4 -0.2$ $\overline{\mathbf{0}}$ 0.2 0.4 0.6 0.8 -1 $cos(\theta_{\nu})$

$$
A_{0y}\sigma_0 = -\frac{1}{4}k^2\beta\sin(2\theta)\cos(\phi) + \sin(\theta)\cos(\phi)(\text{spin triplet only}),
$$

Needs for each *mp*^Λ bin angular dist.

Procedure: Fit $m_{p\Lambda}$ spectrum with $\exp\{C_0+C_1/(m_{p\Lambda}^2-C_2)\}$, then

$$
a_t\!\!=\!\frac{C_1}{2}\sqrt{\frac{m_0^2(m_{max}^2\!-\!m_0^2)}{m_p m_{\Lambda}(m_{max}^2\!-\!C_2)(m_0^2\!-\!C_2)^3}}\Longrightarrow -2.55^{+0.72}_{-1.39\;\mathrm{stat.}}\!\pm\!0.6_{\mathrm{syst.}}\!\pm\!0.3_{\mathrm{theo.}}\;\text{fm}
$$

Combined analysis of femtoscopy and scattering: $-1.4\pm0.2\pm0.7_{\rm theo.}$ fm

see Mihaylov, Haidenbauer, Sarti PLB850

Member of the Helmholtz Association Suide 19 22

THE *S* = −2 **SYSTEMS**

Moving to $S = -2$

Needs high statistics and high resolution and $\frac{1\text{ Hadonbauer, private communication}}{1\text{ Hadonbauer, private communication}}$

Σ [±]Σ [±] and ΛΛ are identical fermions =⇒ *S*-wave must be spin zero Note: repulsive Coulomb interaction can be accounted for

Gasparyan, CH, Haidenbauer, Phys.Rev.C 72 (2005) 034006

Threshold difference ΛΛ-Ξ*N* rather small

OPPORTUNITIES WITH PROTONS AT SIS100

The high initial energy ($\sqrt{s_{\rm max}} = 7.5$ GeV) promises access to

pp \rightarrow *ppJ/* ψ and the *pJ/* ψ interaction

 \implies discovery channel of *c̄c* pentaquarks & role of $\Lambda_c D^{(*)}$ channels

 $\rho\rho\to\rho\Sigma_c^{(*)}\bar{D}^{(*)}$ and the $\Sigma_c^{(*)}\bar{D}^{(*)}$ interaction $\sqrt{2}$

 \implies formation of *c*c pentaquarks

 $p p \to \bar K^0 \bar K^0 \Sigma^+ \Sigma^+$ and the $\Sigma^+ \Sigma^+$ interaction (S=0 only!) $\sqrt s >$ 3.4 GeV

=⇒ closely SU(3) related to *pp* scattering

■ certainly many more

Note: Measurements need to be well above threshold, but not too high ...

Challenge: Needs high resolution for small relative momenta and high statistics

 \sqrt{s} > 5 GeV

 \sqrt{s} > 5.6 GeV

SUMMARY

For elastic interactions dispersion integrals allow one to connect

scattering data to FSI effects.

Method allows for error estimates.

Comparison with Femtoscopy!

Important to keep in mind:

- Dalitz plot required to control crossed channels.
- High statistics and high resolution needed
- **EX EMPLOY polarization observables to project on spin states;**

e.g. in case of $p p \to p K \Lambda$ and $\gamma d \to K^+ \Lambda n$ single spin observables sufficient to isolate spin triplet.

