Highlights Chapter 7: Matter

Manuel Lorenz Goethe-University Frankfurt

Introduction and motivation

Heavy-ion collisions in a nutshell

$p(\pi) + p(n)$ reactions

Reference measurements for Heavy-ion collisions

The FAIR energy range

$p(\pi) + A$ reactions

In-medium hadron properties

Hypernuclei formation

Charmonium in cold nuclear matter

Summary

The phase diagram of strongly interacting matter

Creating Extreme QCD Matter in the Laboratory: HICs

Lifetime of the system: Extract from comparison of observables with models $\approx 10^{-22}$ s (10 fm/c). Directly controllable quantities:

- number of baryons in the colliding nuclei
- center of mass energy $\sqrt{s_{NN}}$
- \rightarrow The more the better: reproduce matter properties.
- \rightarrow Current accelerator facilities cover 3 orders of magnitude from a few GeV to TeV

Energy Dependence of hadron emission:

Energy Dependence of hadron emission:

Switch from a baryon to meson dominated system at 4 GeV

Measurements at different √s line up on a common curve

- \rightarrow HIC allow to probe systematically the phase diagram.
- \rightarrow √s changes from GeV to TeV, T_{chem} changes by factor 3. Hadronic interactions important at all energies.

The FAIR energy range

Theory situation:

complicated region for phenomenological models:

- transition from resonance production mechanisms ($2 \rightarrow 2$, $(2\rightarrow 3)$ to multiparticle production $(2 \rightarrow n)$
- transition from nuclear resonance models (3d phase space) to string formation and decay (longitudinal phase space) is not well known

Experimental situation:

- poor data on (light and strange) hadron multiplicities in p+p reactions
- practically NO data on hadron production in p+n reactions
- little information on differential spectra, correlations etc.
- no elastic scattering data for p_{lab} > 1GeV (urgently needed for transport approaches)
- little information about multi-step processes

Reference measurements are basis for solid interpretation of heavy-ion data!

Reference measurements: highlights

Cross section measurements:

- high interaction rates, allow for reconstruction of rare hadrons
- large geometrical acceptance allows for study of large fraction of final state hadron
- dilepton capability for reconstruction of e.m. decay channels

π -beam

• systematic excitation of baryon and hyperon resonances, due to more selective excitation and larger cross-sections.

Nuclear targets

intermediate step between $p+p$ and $\pi+p$ collisions, addressing rescattering, multi-step processes ..

Isospin effects

different nuclear targets

Phase-space distributions (isotropic vs. longitudinal elongated)

• Map out the transition from hadron to quark and gluon dominated hadron production.

Sub-threshold strangeness production

Unique observable:

Not produced in binary NN collisions below $\sqrt{s_{NN}}$ = 2.55 GeV

 $NN\rightarrow$ NYK⁺: √s_{NN}= 2.55 GeV, $NN\rightarrow NNK^+K^-$: $\sqrt{s_{NN}}$ = 2.86 GeV (strong K- suppression).

Energy must be provided from the system.

Steep excitation function \rightarrow high sensitivity to properties of matter in the collision zone (Equation of State)

However, several effects influence sub-threshold strangeness production in the medium:

- 1. Multistep and multiparticle reactions. C.Hartnack, Phys. Rept. 510 (2012), 119-200 Isolated N+N or more coherent process? Hadron formation time relative to the in-medium propagation time.
- 2. Role of resonances as energy reservoir. J. Steinheimer, J. Phys. G 43 (2016) no.1, 015104
- 3. In-medium modifications lowering/enhancing the production thresholds due to the mass reduction/enhancement, e.g. G-matrix approach T. Song, Phys. Rev. C 103 (2021) no.4, 044901

 \rightarrow Excitation function of strange and multi-strange hadrons in p+p, p+A and A+A.

4. Fermi-motion and short-range correlation of p+n pairs.

> \rightarrow Quasi p+p elastic scattering have a strong preference for interacting with forward going high momentum nuclear protons, "Selective Attention".

4.5 GeV kinetic energy optimal,

e.g. possible with HADES+NeuLand

Sub-threshold production: ϕ /K-

UrQMD:

Tuned to match elementary data by increased branching ratios of N* (needed in the tails of the resonances, consistent with OZI rule) Fixed to p+p data from Anke First transport model to explain Φ /K-

J. Steinheimer, J. Phys. G 43 (2016) no.1, 015104

Sub-threshold production of multi-strange hadrons

Orange: without T-matrix & broadening \rightarrow underestimate the ratio at low energies

T-matrix (green), T-matrix & broadening (red) enhance the ratio

However, medium effects on K, Kbar (blue) suppress it due to the enhanced K- production at low energy

T. Song et al., PRC 106, 24903 (2022)

Dilepton-radiation

Strong in-medium excess of dilepton radiation in Au+Au vs. NN, increases with the system size.

 \overline{P} p+p and n+p references needed

In-medium hadron properties in cold nuclear matter

"Observed hadron masses are nature's compromise between distortion of the vacuum and localization!" F. Wilczek

à *Change vacuum, change hadron properties!*

Heavy-ion collisions:

Larger effects compared compared to cold matter.

Cold nuclear matter: The easiest way to distort the QCD vacuum, controlled conditions (static medium).

In-medium hadron properties

Medium effects restricted to low momenta! \rightarrow ensure acceptance

Geometrical Acceptance at low momenta

Low momentum coverage: worldwide unique feature of HADES

π induced reactions: small recoil momenta of secondaries

- Line shape and line strength of vector mesons via e.m. decays
- Strangeness production and propagation
- Hypernuclei formation

Hypernuclei count rate estimates for 2026

Analysis based on 1.7 x 10⁸ π +W events at \sqrt{s} π \approx 2 GeV

2014: 21 shifts, DAO_{rate} : 1kHZ Expected for 2026: 42 shifts, DAO_{rate}: 45 kHz \rightarrow gain factor: f_{shift} 2 \cdot f_{DAO} 45 = 90!

→ ~ 10000 hypertritons

 π beam experiments offer excellent opportunity for studying hypernuclei

Charm at CBM

- Perturbative probe at low energies.
- Cross section and production mechanism unknown at SIS100 energies $\sqrt{s_{NN}}$ < 8 GeV.
- Gluon fusion vs. gluon exchange. ω to $\sqrt{1/\psi}$ should be suppressed by the OZI rule if gluon exchange is the dominant process.
- $\frac{1}{4}$ multiplicities key observable for QGP *A. Andronic et. Al. Eur.Phys.J.C* 76 (2016) 3, 107
- Important reference measurement of $\frac{J}{w}$ absorption in cold nuclear matter possible at CBM

Summary

- heavy-ion collisions allow to probe systematically the phase diagram.
- reference measurements mandatory solid interpretation of heavy-ion data.
- in particular needed in the FAIR energy range.
- **CBM/HADES** are well suited for this.
- small recoil momenta and low momentum coverage optimal conditions for line shape and line strength measurements of vector mesons
- excellent opportunity for studying hypernuclei
- important reference measurement of \mathcal{V}_{w} in cold nuclear matter possible at CBM

Timeline

 $2025 \rightarrow : \pi$ - induced reactions at HADES \rightarrow Cold matter studies: vector-mesons, strangeness and hypernuclei

> 2029 \rightarrow : p - induced reactions at CBM/HADES \rightarrow Reference measurements for HICs \rightarrow J/ $_{\psi}$ in cold nuclear matter

> > $203X \rightarrow (p)$ – induced reactions

Short Range Correlations (SRC)

Quasi p+p elastic scattering have a strong preference for interacting with forward going high momentum nuclear protons, "**Selective Attention**".

Map out the the transition (Migdal jump) in the nucleonic momentum distribution from a mean-field part to the highmomentum tail dominated by SRC. **Study the factorization** of the reaction mechanisms at low

energies (important test for studies of SRC in inverse kinematics at FAIR).

Short Range Correlations (SRC)

Experimental Setup:

- HADES as detector for the 2 forward p
-

The **Migdal jump** mapped with the anticipated HADES+NeuLAND technology events (factor 50 compared to BNL data).

