Introduction	Intrinsic charm	Fixed-target data	Recombination	Charm asymmetry	SIS100	Inclusive J/ψ	Exclusive J
00000	00000	000	00	000000	00000	0000	00000000

Charm@FAIR

Antoni Szczurek Institute of Nuclear Physics PAN, Kraków, Poland and Rzeszow University

in collaboration with R. Maciula, A. Cisek and I. Babiarz based on: Phys.Rev.D 102 (2020) 1, 014028; J. High Energy Phys. 10 (2020) 135 Phys.Rev.D 105 (2022) 1, 014001; Phys.Lett.B 835 (2022) 137530 Phys.Rev.D110 (2024) 074032.

QCD@FAIR

11-14 November 2024, GSI Darmstadt, Germany

Far-forward charm production at high energies

an interplay of small- and large-x effects

• probing parton densities simultaneously at extremely small ($x < 10^{-6}$) and large (x > 0.1) longitudinal momentum fractions

gluon saturation, intrinsic charm content of the nucleon, recombination mechanism
 forward hadronization (e.g. color reconnection, beyond leading color strings, etc.)

Experiments connected to forward charm production at the LHC and beyond:

- Forward Physics Facilities (FPF) at the LHC: (FASER ν , FASER ν 2, SND@LHC, FLArE): ν_{e} , ν_{μ} , ν_{τ} neutrino fluxes
- IceCube Neutrino Observatory: prompt u_{μ} neutrino flux

Forward charm production at low energies

- rather large-x effects
- probing parton densities simultaneously at rather intermediate $(x \gtrsim 10^{-3})$ and large $(x \gtrsim 0.1)$ longitudinal momentum fractions

gluon saturation, intrinsic charm content of the nucleon, recombination mechanism

forward hadronization (e.g. color reconnection, beyond leading color strings, etc.)

Experiments connected to forward charm production at lower energies:

- fixed-target LHCb mode: D-meson, J/Ψ -meson at $\sqrt{s} = 86.6$ GeV and 68.5 GeV
- fixed-target SHIP experiment at SPS: $u_{ au}$ neutrino flux $\sqrt{s}=$ 27.4 GeV

- 4
- fixed-target NA69/DsTau experiment at SPS: $u_{ au}$ neutrino flux $\sqrt{s} = 27.4$ GeV

QCD charm production mechanisms at forward directions

- g*g* → cc̄ ⇒ the standard QCD mechanism (and usually considered as a leading) of gluon-gluon fusion with off-shell initial state partons, calculated both in the full k_T-factorization approach and in the hybrid model
- g^{*} c → gc ⇒ the mechanism driven by the intrinsic charm component of proton calculated in the hybrid approach with off-shell initial state gluon and collinear intrinsic charm quark
- gq → Dc ⇒ the recombination mechanism calculated in the leading-order collinear approach

Introduction
00000Intrinsic charm
00000Fixed-target data
0000Recombination
00000Charm asymmetry
000000SIS100
00000Inclusive J/
000000Exclusive J
0000000

The k_T -factorization (high-energy factorization) approach

off-shell initial state partons \Rightarrow

initial transverse momenta explicitly included $k_{1,t}$, $k_{2,t} \neq 0$

- additional hard dynamics coming from transverse momenta of incident partons (virtualities taken into account)
- very efficient for less inclusive studies of kinematical correlations
- more exclusive observables, e.g. pair transverse momentum or azimuthal angle very sensitive to the incident transverse momenta

multi-differential cross section:

$$\frac{d\sigma}{k_{1}dy_{2}d^{2}p_{1,t}d^{2}p_{2,t}} = \int \frac{d^{2}k_{1,t}}{\pi} \frac{d^{2}k_{2,t}}{\pi} \frac{1}{16\pi^{2}(x_{1}x_{2}s)^{2}} \frac{|\mathcal{M}_{g^{*}g^{*} \to Q\bar{Q}}|^{2}}{|\mathcal{M}_{g^{*}g^{*} \to Q\bar{Q}}|^{2}} \times \delta^{2} \left(\vec{k}_{1,t} + \vec{k}_{2,t} - \vec{p}_{1,t} - \vec{p}_{2,t}\right) \mathcal{F}_{g}(x_{1}, k_{1,t}^{2}, \mu) \mathcal{F}_{g}(x_{2}, k_{2,t}^{2}, \mu)$$

the LO off-shell matrix elements M_{g*g*→QQ}² available (analytic form)
 the 2 → 3 and 2 → 4 processes (higher-order) only at tree-level (KaTie Monte Carlo)
 F_g(x, k²_t, μ) - transverse momentum dependent - unintegrated PDFs (uPDFs)

 part of higher-order (real) corrections might be effectively included in uPDF

Forward charm production at the LHCb in collider mode

Open charm LHCb data in *pp*-scattering at $\sqrt{s} = 7$, 13 TeV:

Detector acceptance: 2.0 < y < 4.5 and $0 < p_T < 8$ GeV

- inclusive *D*-meson spectra and $D\overline{D}$ -pair correlation observables (M_{inv} , $\Delta \varphi$, p_T -pair)
- longitudinal momentum fractions probed: $10^{-3} < x_1 < 10^{-1}$ and $10^{-5} < x_2 < 10^{-3}$
- p_T -differential cross section well described in different y-bins
- orrect shapes of the correlation observables

(R.Maciula, A. Szczurek, Phys.Rev.D 100 (2019) 5, 054001)

Charm production driven by the intrinsic charm

What if there is a non-perturbative charm content of the proton?

The charm quark in the initial state \Rightarrow

- perturbative: extrinsic charm (from gluon splitting)
- non-perturbative: intrinsic charm (IC)
- the differential cross section for $cg^*
 ightarrow cg$ mechanism:

$$d\sigma_{pp \to charm}(cg^* \to cg) = \int dx_1 \int \frac{dx_2}{x_2} \int d^2 k_t$$
$$\times c(x_1, \mu^2) \cdot \mathcal{F}_g(x_2, k_t^2, \mu^2) \cdot d\hat{\sigma}_{cg^* \to cg}$$

•
$$c(x_1, \mu^2) \Rightarrow$$
 collinear charm quark PDF (large-x)
• $\mathcal{F}_g(x_2, k_t^2, \mu^2) \Rightarrow$ off-shell gluon uPDF (small-x)

• $d\hat{\sigma}_{cg^* \rightarrow cg} \Rightarrow$ only in the massless limit (also available in KaTie)

- phenomenological regularization needed at $p_T \rightarrow 0 \Rightarrow$ we use PYTHIA prescription: $F_{sup}(p_T) = \frac{p_T^2}{p_T^2 + p_T^2}$, $\alpha_S(\mu_R^2 + p_{T0}^2)$, where $p_{T0} = 1.5$ GeV (free parameter)
- the charm quark PDF with IC content is taken at the initial scale: $c(x_1, \mu_0^2)$, where $\mu_0 = 1.3$ GeV so the perturbative charm contribution is intentionally not taken into account

The concept of intrinsic charm in the nucleon

The intrinsic charm quarks \Rightarrow multiple connections to the valence quarks of the proton

- dfferent pictures of non-perturbative *cc* content:
 - sea-like models
 - valence-like models
- we use the IC distributions from the CT14nnloIC and CT18FC PDFs
- Brodsky-Hoyer-Peterson-Sakai (BHPS) model
- Meson-Baryon Model (MBM)
- global experimental data put only loose constraints on the P_{ic} probability

- the presence of an intrinsic component implies a large enhancement of the charm distribution at large x (>0.1) in comparison to the extrinsic charm prediction
- the models do not allow to predict precisely the absolute probability P_{ic}

Intrinsic charm at the LHC and beyond

A possible impact of the intrinsic charm component on the forward charm particle production in already existing or future experiments at different energies:

• FASER at the LHC (dedicated to a measurement of forward neutrinos originating from semileptonic decays of *D* mesons)

- the intrinsic charm important at |y| > 6
- transverse momentum distribution visibly enhanced

Intrinsic charm at the LHC and beyond

A possible impact of the intrinsic charm component on the forward charm particle production in already existing or future experiments at different energies:

• Fixed-target LHCb mode at $\sqrt{s} = 86.6$ GeV (*D*-meson production)

• at the lower energy \Rightarrow the intrinsic charm important already at |y|>1

Intrinsic charm at the LHC and beyond

A possible impact of the intrinsic charm component on the forward charm particle production in already existing or future experiments at different energies:

• SHIP/DsTau at the SPS CERN at $\sqrt{s} = 27.4$ GeV (dedicated to a measurement of forward ν_{τ} neutrinos originating from semileptonic decays of D_s mesons)

at the lower energy ⇒ the intrinsic charm important in the whole rapidity spectrum
 transverse momentum distribution visibly enhanced

Fixed-target charm data at $\sqrt{s} = 86.6$ GeV: Intrinsic Charm

The fixed-target data on forward open charm meson production already exists:

• Fixed-target LHCb mode at $\sqrt{s} = 86.6$ GeV (*D*-meson production)

- some problems with understanding the LHCb fixed-target open charm data identified
- only upper limits of theoretical predictions (based on different approaches) can roughly describe the data
- <u>different sources of uncertainties</u>: charm quark mass, renormalization and factorization scales, details of the fragmentation procedure, etc.

Fixed-target charm data at $\sqrt{s}=$ 86.6 GeV: Intrinsic Charm

The fixed-target data on forward open charm meson production already exists.

• Fixed-target LHCb mode at $\sqrt{s} = 86.6$ GeV (*D*-meson production)

- some problems with understanding the LHCb fixed-target open charm data identified
- a new scenario proposed with the intrinsic charm contribution needed to describe the data points in the backward direction and at larger p_T 's
- $\chi^2_{
 m min}$: $P_{\it ic}\sim 1.65\%$ but large uncertainties

Fixed-target charm data at $\sqrt{s} = 38.7$ GeV: Intrinsic Charm

The fixed-target data on forward open charm meson production already exists.

• Fermilab (1986): D-meson production in pp-scattering at $\sqrt{s} = 38.7$ GeV

• we obtain a very good description of the x_F-distribution within our model with the same set of parameters as in the LHCb case

the intrinsic charm component crucial for large-x_F data

IntroductionIntrinsic charmFixed-target dataRecombinationCharm asymmetrySIS100Inclusive J/ψExclusive J000

The $c\bar{q}$ -recombination mechanism of charm production

Braaten-Jia-Mechen (BJM) recombination $q + g \rightarrow (\bar{c}q)^n + c$

- short-distance process (in contrast with fragmentation)
- $(\bar{c}q)^n$: q has small momentum in the \bar{c} rest frame
- q and c
 are in a state with definite color and angular momentum quantum numbers specified by n
- direct meson: $qg \rightarrow \overline{D}c$ and $\overline{q}g \rightarrow D\overline{c}$
- subsequent fragmentation of the associated c-quark
- the direct recombination leads to D/\bar{D} production asymmetry

• the differential cross section for $qg \rightarrow \bar{D}c$ mechanism: $\frac{d\sigma}{dy_1 dy_2 d^2 p_t} = \frac{1}{16\pi^2 \hat{s}^2} [x_1 q_1(x_1, \mu^2) x_2 g_2(x_2, \mu^2)] \overline{\mathcal{M}_{qg \rightarrow \bar{D}c}(s, t, u)|^2} + x_1 g_1(x_1, \mu^2) x_2 q_2(x_2, \mu^2)] \overline{\mathcal{M}_{gq \rightarrow \bar{D}c}(s, t, u)|^2}]$

• $\overline{|\mathcal{M}_{qg \to Dc}(s, t, u)|^2} = \overline{|\mathcal{M}_{qg \to (\bar{c}q)^n c}|^2} \cdot \rho$

M<sub>qg→(c̄q)ⁿc|² ⇒ explicit form of the matrix element squared available
 ρ can be interpreted as a probability to form real meson
 ⇒ can be extracted from experimental data
 e.g. fixed-target LHCb data on D/D̄ production asymmetry!

</sub>

Fixed-target charm data at $\sqrt{s} = 86.6$ GeV: Recombination

\Leftarrow the rapidity distribution for D^0 -meson:

- there is a room for the recombination mechanism with $\rho = 10\%$ together with the intrinsic charm contribution with $P_{IC} = 1.0\%$
- \Downarrow very recent LHCb fixed-target data on the $D^0/\overline{D^0}$ production asymmetry at $\sqrt{s} = 68.5$ GeV: Eur. Phys. J. C83 (2023) 541
 - our predictions consistent with the LHCb data taking $\rho = 10\%!$

16 / 57

Fixed-target charm data at $\sqrt{s} = 68.5$ GeV: New analysis

- a lack of the well-established methods for the hadronization of heavy quarks into heavy hadrons in the forward/backward directions
- e.g. Pythia has only been tuned in the central region, and thus one should not expect reliable predictions in the forward direction
- dedicated forward physics tunes needed (some first attempts done only very recently in Phys.Rev.D 109 (2024) 1, 016010)

- the alternative and often used fragmentation procedure with fragmentation functions also has limitations when dealing with forward production and small transverse momenta
- our recent update with respect to the previous studies: the fragmentation procedure performed in the parton-parton c.m.s. (not in overall proton-proton c.m.s.)
- ullet a visible sensitivity of the results to the details of the fragmentation procedure

Fixed-target charm data at $\sqrt{s} = 68.5$ GeV: CT18FC PDF

both BHPS and MBM lead to very similar differential cross sections
 P_{IC}: CT18FC (≈ 0.5%) and CT14nnloIC (between 1% and 2%)

Fixed-target charm data at $\sqrt{s} = 68.5$ GeV: The asymmetry

- BHPS3: symmetric $c = \overline{c}$
- MBMC/MBME: asymmetric $c \neq \overline{c} \Rightarrow$ may lead to D/\overline{D} production asymmetry

- backward rapidity region and small-p_T: the asymmetry well described by the recombination only (the asymmetric IC does not change the situation here)
- the asymmetry at larger p_T 's: cannot be described by the recombination
- asymmetric IC generates the D/D asymmetry at large-p_T, however, the effect is to small to describe the data points

Introduction In	trinsic charm	Fixed-target data	Recombination	Charm asymmetry	SIS100	Inclusive J/ψ	Exclusive J
00000 00	0000	000		000000			

PYTHIA8 result

Rather small cross section We start from hard processes with charm What about other parton shower effects ?

gg-fusion in k_t -factorization + PYTHIA8 hadronization

Much larger cross section

gg-fusion in k_t -factorization + PYTHIA hadronization

What if we go to even lower energies?

probing of parton distributions at very large-x

- the cross section \Rightarrow tens of nanobarns
- ullet different production mechanisms \Rightarrow both intrinsic charm and recombination sizeable
- WARNING: large uncertainties from the perturbative calculations (different approaches, charm quark mass, scales) and from non-perturbative hadronization (differences in charm hadronization in pp and e⁺e⁻; A/D enhancement; hadronization in central regions and in forward directions, etc.)
- SIS100 (CBM, NuStar) can contribute?

I ntroduction 00000	Intrinsic charm 00000	Fixed-target data 000	Recombination	Charm asymmetry 000000	SIS100 00000	Inclusive J/ψ 0000	Exclusive J 000000000

of different mechanisms and theoretical approaches.

conventional (gg fusion), recombination and IC of similar size

- Pythia result is very small !
- Therefore very interesting.

SIS100, asymmetry

the result from pure recombination must be supplemented by gg and qq
mechanisms. Then the asymmetry will be smaller.

SIS100, k_t -factorization

k_T-factorization and different gluon and quark uPDFs

• gg and $q\bar{q}$ are comparable. It was not so at larger energies.

SIS100, collinear approach

LO collinear approach and different collinear PDFs

• There is some difference due to the choice of parton distributions.

IntroductionIntrinsic charmFixed-target dataRecombinationCharm asymmetrySIS100Inclusive J/ψExclusive J00

$pp \rightarrow J/\psi$ (inclusive production)

$pp \rightarrow J/\psi$ at $\sqrt{s} = 68.5$ GeV

We get proper order of magnitude

IntroductionIntrinsic charmFixed-target dataRecombinationCharm asymmetrySIS100Inclusive J/ψExclusive J000

$pp \rightarrow J/\psi$ (inclusive production) at $\sqrt{s} = 10$ GeV

Cross section seems OK

$pp \rightarrow J/\psi$ (inclusive production)

Figure: First results in the improved color evaporation model. This numbers should be multiplied by 0.02

A fraction of nb. In addition it must be multiplied by 0.06 (J/ψ decay branching fraction).

IntroductionIntrinsic charmFixed-target dataRecombinationCharm asymmetrySIS100Inclusive J/ψExclusive J000

$pp \rightarrow ppJ/\psi$ in k_t -factorization (exclusive production)

Figure: Two possible contributions.

Coherent sum of both processes One has to understand first $\gamma p \rightarrow J/\psi p$.

$\gamma p \rightarrow J/\psi p$, QCD approach

according to Cisek, Schäfer, Szczurek

Imaginary part of the amplitude is almost sufficient at high energies. Impossible to describe the Glue-X data without real part of the amplitude.

$pp \rightarrow ppJ/\psi$ at $\sqrt{s} = 68.5$ GeV

Was not measured at this energy

IntroductionIntrinsic charmFixed-target dataRecombinationCharm asymmetrySIS100Inclusive J/ψExclusive J00

$pp ightarrow pp J/\psi$ at $\sqrt{s}=6$ 8.5 GeV

1

$pp ightarrow pp J/\psi$ at $\sqrt{s} = 10$ GeV

Can we assure exclusivity ?

$pp ightarrow pp J/\psi$ at $\sqrt{s}=10$ GeV

large-x, Work on UGDF may be required

$pp ightarrow pp J/\psi$ at $\sqrt{s}=10$ GeV

individual components (photon-pomeron, pomeron-foton)

$pp ightarrow pp J/\psi$ at $\sqrt{s}=10$ GeV

Real part is large and must be included !

$pp \rightarrow \eta_c$ (inclusive cross section)

This was studied at the LHC by Babiarz, Schäfer and Szczurek, JHEP2002 (2020) 037.

Introduction	Intrinsic charm	Fixed-target data	Recombination	Charm asymmetry	SIS100	Inclusive J/ψ	Exclusive J
00000	00000	000	00	000000	00000	0000	00000000

$pp \rightarrow \eta_c$ at the LHC

Quite good agreement We can go to smaller energies.

 $pp o \eta_c$ at $\sqrt{s} = 10~{
m GeV}^{\prime}$

Big difference for different UGDFs Rather small cross section and branching fractions are small. decay channels: $p\bar{p}$, $\gamma\gamma$, $\eta\pi^+\pi^-$, $\phi\phi$, $\pi^+\pi^-\pi^+\pi^-$

Multiparton Fock components

Higher Fock components with charm: $uudc\bar{c} + uudc\bar{c}u\bar{u} + uudc\bar{c}d\bar{d} + ...$ In the Brodsky et al. approach the probability distribution of a five particle IC Fock state in the nucleon

$$dP_{ic,5} = P_{ic}^{0} N_{5} \int dx_{1} \dots dx_{5} \int dk_{1,x} \dots dk_{5,x} \int dk_{1,y} \dots dk_{5,y}$$
$$\delta \left(1 - \sum_{i=1}^{5}\right) \delta \left(\sum_{i=1}^{5} k_{xi}\right) \delta \left(\sum_{i=1}^{5} k_{yi}\right) \frac{1}{\left(m_{p}^{2} - \sum_{i=1}^{5} \frac{m_{i}^{2}}{x_{i}}\right)^{2}} .(1)$$
This is used by Ramona Vogt recently for J/ψ , D^{0} and \bar{D}^{0} .

Multiparton Fock components

As an example minimal configuration is: $uudc\bar{c}$ for D^0 (leading), $uudc\bar{c}u\bar{u}$ for \bar{D}^0 (subleading). Different minimal configuration for D^0 and \bar{D}^0 . This leads to $D^0 - \bar{D}^0$ and $D^+ - D^-$ asymmetry. as in our recombination effect. The probability of 5- and 7-parton state is not known. The cross section is:

$$d\sigma_{ic} = dP_5 \sigma_{pp}^{tot} F_d \tag{2}$$

$$egin{aligned} \sigma^D_{ic}(pp) &= \sigma_{ic}(pp) \;, \ \sigma^{J/\psi}_{ic}(pp) &= F_c\sigma_{ic}(pp) \;. \end{aligned}$$

Criticism: two unknown factors!

(3)

Introduction	Intrinsic charm	Fixed-target data	Recombination	Charm asymmetry	SIS100	Inclusive J/ψ	Exclusive J
00000	00000	000	00	000000	00000	0000	00000000

Conclusions

We have shown that **the intrinsic charm** and **the recombination** mechanisms can be extremely important for **forward charm production** at intermediate energies as well as close-to-threshold energies:

- D-meson at fixed-target LHCb experiments
 - a scenario proposed with the intrinsic charm contribution needed to describe the data points in the backward direction and at larger p_T 's at the LHC fixed target experiments.
 - upper limit for the intrinsic charm probability P_{IC} ($\approx 0.5\%$) with the CT18FC
 - still a room for recombination mechanism
 - the recombination probability from D/\overline{D} -production asymmetry (pprox 10%)
 - the D/\bar{D} production asymmetry in the backward region and at small transverse momenta well explained by the recombination mechanism at FOG device.
 - the asymmetry at larger transverse momenta can be described neither by the recombination mechanism nor by the asymmetric intrinsic charm
 - Inclusive cross section for J/ψ production is rather small and strongly depends on UGDFs used.
 - Exclusive cross section for J/ψ production is even smaller. Can we guarantee rapidity gaps (exclusivity) ?
 - Inclusive cross section for η_c not too small but branching fractions are very small. Different decay channels must be studied.

Backup Slides

Intrinsic charm at the LHC and beyond

A possible impact of the intrinsic charm component on the forward charm particle production in already existing or future experiments at different energies:

• Future Circular Collider (FCC) (D-meson production)

- the intrinsic charm important at |y| > 7
- transverse momentum distribution visibly enhanced

The $c\bar{q}$ -recombination mechanism of charm production

۲

- both IC and recombination negligible at the LHCb in collider mode: $\sqrt{s} = 13$ TeV, 2 > y > 4.5
- situation changes when approaching larger rapidities

mechanism of similar size

 y > 6: IC dominates over the standard mechanism

y > 6 recombination and the standard

- •
- 48 / 57

Kinematics probed with the IceCube prompt neutrino flux

Mapping the dominant regions of the phase space associated with $c\bar{c}$ -pair production relevant for the **prompt flux at IceCube**

(V.P. Goncalves, R.M., R. Pasechnik, A. Szczurek, Phys.Rev.D 96 (2017) 9, 094026)

recent: up to E_ν = 3 · 10⁶ GeV ⇒ the LHC energy range
 future: E_ν > 10⁷ GeV ⇒ energy range beyond that probed in the LHC Run2

Kinematics probed with the IceCube prompt neutrino flux

Mapping the dominant regions of the phase space associated with $c\bar{c}$ -pair production relevant for the **prompt flux at IceCube**

(V.P. Goncalves, R.M., R. Pasechnik, A. Szczurek, Phys.Rev.D 96 (2017) 9, 094026)

- projectile $0.2 < x_1 < 0.6$
- target: $10^{-6} < x_2 < 10^{-5}$ (IceCube recently) and even $10^{-8} < x_2 < 10^{-5}$ (future)
- far-forward production beyond the LHC range ⇒ very asymmetric kinematics

Predictions of our model for charm x_F -distributions

• when intrinsic charm is included the behavior of the x_F-distribution is strongly modified in the 0.03 \leq x_F \leq 0.6 range

- the Feynman x_F -distribution for large x_F is dominated by the $cg^* \rightarrow cg$ mechanism with intrinsic charm
- our predictions for the standard charm production mechanism obtained with the hybrid model are consistent with the NLO collinear calculations by FONLL

Prompt neutrino fluxes and saturation effects

- sum of both production mechanisms: gg^* -fusion and the cg^* with IC BHPS 1%
- the KMR and KS linear predictions are similar \Rightarrow BFKL effects not important for lceCube (which probes $0.2 < x_F < 0.5$)
- the KS nonlinear is a factor ≈ 3 smaller for x_F = 0.2
 ⇒ saturation effects strongly modifies the magnitude of the distribution

Predictions and IceCube limits including saturation

- within the saturation scenario the impact of the prompt flux driven by the gluon-gluon fusion mechanism is even smaller and becomes negligible
- nonlinear QCD dynamics $\Rightarrow P_{ic} \leq 2.0\%$
- slightly higher than the central CT14nnloIC PDF set

IceCube: Prompt neutrino fluxes and intrinsic charm

- intrinsic charm very important
- extrinsic charm negligible
- the inclusion of the cg^{*} → cg mechanism driven by the intrinsic charm (IC) has a strong effect on the prompt neutrino flux
- the flux is enhanced by one order of magnitude when intrinsic charm is present $(P_{ic} = 1\%$ here)

IceCube: Predictions and limits for intrinsic charm

- the impact of the prompt flux is small in the current kinematical range probed by IceCube as long as only the gluon-gluon fusion mechanism is taken into account
- the intrinsic charm mechanism implies a large enhancement of the prompt flux at large E_{ν} , with the associated magnitude being dependent on the value of P_{ic}
- linear QCD dynamics $\Rightarrow P_{ic} \leq 1.5\%$
- similar to the central CT14nnloIC PDF set

FASER ν_2 : Far-forward neutrino fluxes

Semileptonic decays of $D^0, D^+, \Lambda_c \Rightarrow$ source of ν_e, ν_μ

- $E_{\nu} > 100 \text{ GeV} \Rightarrow \text{intrinsic charm and recombination}$ larger than standard mechanism
- both IC and recombination of similar size
- u_{μ} large backgrounds from π and K
 - \Rightarrow IC and recombination completely covered even at large energies
- $\nu_{e:}$ large background from K but \Rightarrow both IC and recombination win at $E_{\nu} > 1000$ GeV

FASER ν_2 : Far-forward neutrino fluxes

 D^+_s meson decays \Rightarrow dominant source of $u_{ au}$

- direct $D^+_s \to \tau^+ \nu_\tau$ and chain $D^+_s \to \tau^+ \to \overline{\nu}_\tau$ decays
- no background from light mesons due to limited phase space for τ production in the D_s decay
- $s(x) \ll u_{val}(x), d_{val}(x) \Rightarrow$ recombination reduced
- $E_{
 u} > 100$ GeV \Rightarrow intrinsic charm larger than standard mechanism
- flux dominated by intrinsic charm
- optimal to pin down the IC contribution in the nucleon

