

WASA @ FRS: from past to current status of nuclear and hadron physics at FRS QCD at FAIR workshop 2024 13/11/2024

Christoph Scheidenberger GSI & Justus-Liebig-Universität Giessen & Christophe Rappold IEM – CSIC, Madrid - Spain

FRS – a versatile instrument for experiments with relativistic beams

- Production of exotic nuclei and identification (B ρ - Δ E-ToF)
- Separator (cocktail beams, mono-isotopic beams)
- Momentum slit \rightarrow selective trigger
- Spectrometer (high momentum resolution)
- Different ion-optical modes: analyzer-spectrometer, dispersion matching

- Anti-proton production
- Hadron physics
- Atomic physics
- Nuclear physics
- Applications

GSI(**SCIENTIFIC REPORT 2001** Geneticentell for Commissionichung with Deventual

GSI-FAIR SCIENTIFIC REPORT 2022

An overview of the 2022 achievements in science and technology

Sub-threshold anti-proton production at FRS

Deeper insight to sub-threshold particle production process:

- Energy dependence
- Size and asymmetry dependence
- Momenta of created particles _

Ne + Sn

π

1011

0.5

0

Discovery and study of deeply-bound pionic states with FRS

- Pion-nucleus interaction
 → binding energy, width, mass shift
- Difference of s-wave potential
 - \rightarrow restoration of chiral symmetry?
 - \rightarrow reduction of chiral order parameter f_{π}?
- Partial chiral restoration in nuclear medium
 - \rightarrow well-defined quantum states
 - \rightarrow saturation density

H. Geissel et al., Phys. Rev. Lett. 88 (2002) 122301 K. Suzuki et al., Phys. Rev. Lett. 92 (2004) 072302

Meson-nucleus bound states

electromagnetic + strong interaction

strong interaction only

Probe for strong interaction effect in finite nuclear density

Search for η '-mesic nuclei at FRS

QCD at FAIR Workshop 2024

Darmstadt, 11-14 November 2024

Christoph Scheidenberger

A new era: combination of WASA@FRS (and soon: Super-WASA@Super-FRS)

WASA-FRS Experimental Setup

QCD at FAIR Workshop 2024

Opportunities at FRS and Super-FRS

				r an an tribuna	gain factor	
	$\text{B}\rho_{\text{max}}$	∆p/p	$\Delta \Phi_{x}, \Delta \Phi_{y}$	power	¹⁹ C	¹³² Sn
FRS	18 Tm	1.0 %	±13, ±13 mrad	1500	1	1
Super-FRS	20 Tm	2.5 %	±40, ±20 mrad	1500	5	10
				including primary rate	250	20 000

H. Geissel et al. Nucl. Instr. Meth. B70 (1992) 247 H. Geissel et al. Nucl. Instr. Meth. B204 (2003) 71

Special features (FRS & Super-FRS):

- p ... U, exotic nuclei, $\pi^{+/-}$, pbar
- Dispersion matching

•

- Momentum spectroscopy (dp ≈ 10⁻⁴) → missing mass
- Selectivity for certain channels

New features (Super-FRS):

- SIS-100 energy domain
- Pre-separation of secondary beams
- Multiple-stage operation
- Larger apertures & acceptance

see contribution by Kenta Itahashi in "Parallel Session II on white paper's chapter 9" (today afternoon)

WASA-FRS Experiment : Concept & Layout

• From original WASA: solenoid & return yoke (with Csl)

13/11/2024

WASA-FRS Experimental campaign: Jan. – March 2022

13/11/2024

WASA-FRS: Study of η' -mesic Nuclei

13/11/2024

• Study of axial U(1) anomaly & chiral condensate in medium: Semi-exclusive missing-mass of ¹²C(p,dp): η'-¹¹C MWDC quadrupole magnet TA F1 F3 Beam from F2 3 decay modes n'-nuclei: SC41 **SIS-18** $\eta' p \rightarrow \eta p$ SC42 SC43 dipole magnet n' N $\rightarrow \pi p$ SC31 $\eta' pN \rightarrow p N$ WASA central detector, 0 10 m fiber trackers, start counter, target n′p→np PSB η′p→πp SEC n′pN→pN PSFE PSBE 20 to FRS p beam d F4 200 300 400 500 600 700 800 T_p [MeV] Y.K. Tanaka and Y. Higashi Focus on detection: p [300 - 600 MeV] in WASA & d in FRS 50 cm S/B improve by 100 in semi-exclusive measurement Carbon target

WASA-FRS: Study of hypernuclei

 2 puzzles: possible signal of nnΛ & structure of ³_ΛH: Invariant mass spectroscopy: Lifetime & radius

• At the middle focal plane of FRS:

At the middle focal plane of FRS:

MDC

 $^4_{\Lambda}\text{H}
ightarrow {}^4\text{He}{+}\pi^-$

ion : ⁶Li+ ¹²C @ 1.96 AGeV or √s_{NN} = 2.7 GeV enoid Magnet

T0 detector:

- 28 segments 1.5 x 1.5 mm² x 4.5 cm
- Total size 3.4 x 4.5 cm²
- Start timing of the Time-of-Flight
- Time resolution: $\sigma \sim 40 \text{ ps}$
- < 2MHz per segment \rightarrow 2 10⁷ total beam intensity
- E. Liu et al., NIM A **1064**, 169384 (2024)

PFT1,2

/MFT/DFT: Fiber Trackers

- E-PSBE-PSFE: Plastic scintillators
- C: Drift chambers base on straw tubes finger scintillators

SEC: Csl crystal calorimeter

0111,2,3

T0

• At the middle focal plane of FRS:

Fiber trackers: XUV layouts

- 512 or 768 fiber / layer : Fiber of 0.5 mm Xsection
- In total: 5760 channel readout
- Tracking charged particles
- Position resolution: $\sigma \sim 0.25 \text{ mm}$
- Charge also measured via ToT

UFT1,2,3

• UFT=DFT Eff : ~ 95% MFT : ~93%

MF

• NIMA paper in preparation by V. Drozd (PhD Student)

MFT

FT: Fiber Trackers PSFE: Plastic scintillators nambers base on straw tubes ntillators tal calorimeter

LI

T0

2.4 cm

13/11/2024

• At the middle focal plane of FRS:

• At the final focal plane of FRS:

• At the final focal plane of FRS:

Photos by Jan Hosan and GSI/FAIR

Expected performances

WASA@FRS S490 & S447

 $T_{p} = 2.5 \text{ GeV}, 12C(p,d)$

WASA Tracking: new development with GNN

- From published work: [H. Ekawa et al., Eur. Phys. J. A 59, 103 (2023)]
 - Excellent track finder for π (98%) & others / Ghosts 0.04%
 - Also track parameters estimation only for π –
- New R&D: More complex GNN models \rightarrow 5 models
 - Excellent track finder \rightarrow all particles
 - Good track parameters estimators \rightarrow all
 - <u>Allow</u> Particle Identification with GNN
- Improvement in KF fitter:
 - Optimized setting: High efficiency

FRS: Ion-optics from experimental data

- Analysis of high resolution spectrometer for fragments:
 - Momentum analysis : High acceptance & high resolution
 - \rightarrow Needs ion-optics calibration: Several datasets with fixed parameters

After correction and ion-optics up to second order :

- A momentum resolution for fragments : 5 10⁻⁴
- Position & angular resolutions : [x,y] ~ 0.2 mm & [a, b] ~ 0.8 and 0.7 mrad

Particle identification: η' -mesic Nuclei

- WASA Combined PID with TOF, ΔE and q/p:
 - TOF start ~ 200 ps computed based on S4 + track info. in FRS
 Preliminary

Particle identification: Hypernuclei

- Analysis of WASA central system for hadron measurements :
 - PID at S2 middle focal plane of FRS: WASA PID PSB GNN

→Improved the track finding with Graph Neural Network: Estimator resolutions: momentum 8.8%, angular 2.3 mrad [H. Ekawa et al., Eur. Phys. J. A 59, 103 (2023)]

Preliminary invariant masses

• Invariant mass of $\Lambda \rightarrow \pi$ - + p & ${}^{3}_{\Lambda}H \rightarrow \pi$ - + ${}^{3}He$:

Red \rightarrow real event | Blue \rightarrow mixed event: π - Event #n + p Event #n+1

22/24

Summary

- WASA-FRS:
 - The experiment took place 2022, it was very successfully !
 - S490: η' -mesic Nuclei:
 - $\eta'NN \rightarrow NN$: WASA worked nicely for tagging the protons
 - p (WASA)+d (FRS) detection: BG suppression of ~1/200
 - Missing mass spectra under detail analysis !
 - S447: ${}^{3}\Lambda$ H and nnA puzzles:
 - $\rightarrow \Lambda$ + hypertriton events are observed
 - Lifetime & radius measurement soon !
 - More data:
 - mid-rapidity Λ dataset from proton measured in FRS
 - 12C beam : ${}^{9}_{\Lambda}B \rightarrow {}^{9}C + \pi$ & ${}^{3}_{\Lambda}H \rightarrow {}^{3}He + \pi$ -

The WASA-FRS collaboration (only core members)

.

High Energy Nuclear Physics Laboratory, RIKEN, Japan

- H. Ekawa, Y. Gao, Y. He, A. Kasagi, E. Liu, A. Muneem, M. Nakagawa, T.R. Saito, Y. Tanaka, A. Yanai, J. Yoshida, H. Wang
- <u>HRS-HYS group, GSI, Germany</u>
 - H. Alibrahim Alfaki, V. Drozd, T.R. Saito, T. Weber
- FRS/SFRS Research Group, GSI, Germany
 - K.-H. Behr, B. v. Chamier Gliszezynski, T. Dickel, S. Dubey, J. Eusemann, D. Kostyleva, B. Franczak, H. Geissel, E. Haettner, C. Hornung, P. Roy, C. Scheidenberger, P. Schwarz, B. Szczepanczyk, M. Will, J. Zhao
- Meson Science Laboratory, RIKEN, Japan
 - K. Itahashi, R. Sekiya
- Instituto de Estructura de la Materia CSIC, Spain
 - S. Escrig, C. Rappold
- <u>Cryogenic Department, GSI, Germany</u>
 - A. Beusch, H. Kollmus, C. Schroeder, B. Streicher
- Experiment Electronics Department, GSI, Germany
 - H. Heggen, N. Kurz, S. Minami
- Detector Laboratory, GSI, Germany:
 - C. Nociforo, E. Rocco
- Nuclear Spectroscopy Group, GSI, Germany:
 - M. Armstrong, N. Hubbard, K. Wimmer
- Super-FRS Project, GSI, Germany:
 - F. Amjad, E. Kazantseva, R. Knöbel, I. Mukha, S. Pietri, S. Purushothaman, H. Weick
- Target Laboratory, GSI, Germany:
 - B. Kindler, B. Lommel

- Institut für Kernphysik, Technische Universität Darmstadt, Germany:
 - G. Schaumann
- University of Applied Sciences, Giessen, Germany:
 - S. Kraft
- Department of Engineering, Gifu University, Japan:
 - A. Kasagi, K. Nakazawa
- ESRIG Energy and Sustainability Research Institute Groningen, University of Groningen, The Netherlands:
 - V. Drozd, M. Harakeh, N. Kalantar-Nayestanaki, M. Kavatsyuk
- Institute of Modern Physics, China
 - L. Duan, Y. Gao, E. Liu, J. Ong, X. Tang
- Institute of Physics, Jagiellonian University, Poland
 - A. Khreptak, M. Skurzok
- Department of Low and Medium Energy Physics, Jožef Stefan Institute, Slovenia
 - Z. Brencic
- Department of Physics, Kyoto University, Japan:
 - R. Sekiya
- School of Nuclear Science and Technology, Lanzhou University, China:
 - Y. He, J. Ong, T.R. Saito, X. Tang
- Institut für Kernphysik, Johannes Gutenberg-Universität Mainz, Germany:
 - P. Achenbach, J. Pochdzalla
- Michigan State University, USA:
 - D. Morrissey
- Universidad de Santiago de Compostela, Spain:
 - J. Benlliure, M. Fontan, A. Gonzalez, G. Jimenez, J. Rodríguez-Sánchez