

QCD at FAIR workshop 2024 GSI, Darmstadt

Nucleon Structure at SIS100: Internal Charm, Trace Anomaly and GPDs

Stefan Diehl

Justus Liebig University Giessen University of Connecticut

November 12th 2024

Introduction and Overview

- The decomposition of global properties of the proton is a key issue in hadron physics
	- \rightarrow How can the mass and the spin be described in terms of individual contributions from quarks and gluons?
	- \rightarrow Which components are really contributing to the protons wave function?
	- \rightarrow How can we access the mechanical properties of the proton, like the distribution of the pressure and shear forces?

Hadron beams at SIS100 can make important contributions to these questions:

- Contribution of intrinsic charm to the protons wave function
- Trace anomaly and its contribution to the proton mass
- Gravitational form factors and GPDs
	- \rightarrow 3D imaging of the nucleon and its resonances

• QCD describes the proton in terms of quarks and gluons:

2 up and 1 down quark + infinite number of quark-antiquark pairs (sea quarks)

- Quark sea: High energy collissions revealed both light and heavy quarks
	- \rightarrow The mass of heavy quarks can be bigger than the proton mass!
- It is unclear, weather heavy quarks are part of the proton wave function \rightarrow Intrinsic heavy quarks
- Theories predict, that the proton could have a sizable intrinsic component of the lightest heavy quark, the charm quark
	- BUT: Previous efforts in proving these arguements experimentally have not been fully conclusive

2

What is intrinsic charm?

"extrinsic charm"

Charm pair originates from the QCD DGLAP evolution

→ Description by perturbative QCD

"intrinsic charm"

Charm pair was there before the evolution

→ Strong non-perturbative effects

3

Model description:

- Proton described as a "bag" with five quarks: $\mid u\, u\, d\, c\, \overline{c} > 0$
- **Brodsky, Hoyer, Peterson, Sakai (80)**

4

• Probability to find a charm-anticharm pair in the proton:

$$
P = \frac{P_0}{\left[m_p^2 - M^2\right]^2} \qquad \qquad M^2 = \sum_{i=1}^5 \frac{m_i^2}{x_i} \qquad \qquad x_i = \text{momentum of the parton i}
$$

• **Momentum distribution of the charm**: Integrate P over $x_1 - x_4$ \rightarrow $P(x_5) = c(x)$

Charm component of the meson cloud:

Navarra, Nielsen, Nunes, Teixeira (96) Paiva, Nielsen, Navarra, Duraes, Barz (98) Carvalho, Duraes, Navarra, Nielsen (01)

 $m_D = 1870MeV$ ➔ **Both have a similar momentum fraction: x ~ 0.5** $m_{\Lambda} = 2280MeV$

➔ These intrinsic charm fluctuations can be freed by a soft interaction

How can we measure the intrinsic charm?

1. Deep-inelastic scattering: Parton distributions

$$
\sigma \propto F_2^c(x) \propto c(x)
$$

EMC data for the deep-inelastic electromagnetic structure function $\mathsf{F^c}_2$ based on $\mathsf \mu$ scattering:

→ Fits of DIS data favour 1-2 % intrinsic charm Pumplin, Lai, Tung,

hep-ph/0701220

How does it look like in hadronic collissions?

 \rightarrow Intrinsic charm is hard and will produce charm at high momentum

$$
g \ g \to c \ \overline{c} \qquad q \ \overline{q} \to c \ \overline{c}
$$

➔ Intrinsic charm can be accessed in **inclusive reactions**

 $p p \rightarrow \Lambda_c X$ p $p \rightarrow J/\psi X$ p $p \rightarrow D X$ + other charm mesons

 \rightarrow Also p A and p \overline{p} colissions are of interest!

• **Description based on collinear factorisation:**

$$
\frac{d\,\sigma^{p p \to c\bar{c} X}}{d\,x_D\,d\,x_{\bar{D}}\,d^{\,2} p_{\bar{r}}} = \int_0^1 d\,x_1 \int_0^1 d\,x_2 \,f_{\bar{g}}\,(x_1,Q^2)\,f_{\bar{g}}\,(x_2,Q^2)\,\hat{\sigma}_{gg \to c\bar{c}}\,(x_1,x_2)\,D_c\,(x_D\,,p_{\bar{r}}^2)\,D_c\,(x_{\bar{D}},p_{\bar{r}}^2)
$$
\nPDFs

- **LHCb:** Evidence of intrinsic charm in Z+c-jet events
- Ratio of Z+c-jet to Z+all-jet events (PRL 128, 082001 (2022))
- Ratio at \sqrt{s} = 13 TeV is more consistent with calculations including intrinsic charm
- Differences between calculations with and without intrinsic charm get larger for the highest rapidity bin (in the most forward region)
	- \rightarrow Up to 1% intrinsic charm content

➔ LHCb results need to be included in global PDF fits for a final conclusion

Predictions for intrinsic charm in inclusive charmonium production

R. Vogt, Energy dependence of intrinsic charm production: Determining the best energy for observation, Phys. Rev. C, 106(2):025201 (2022)

 \rightarrow Strongest IC contribution for pp colissions at lower beam energies and small $p_T!$

At SIS100 energies: IC contribution is in the range of 0*.*1 *-* 1*.*% compared to "standard" gluon-gluon and quark-gluon charm production processes

 \rightarrow p_T and y distributions are needed \rightarrow IC casuses a flattening of the p_T distribution

FAIR: Production of charm in proton-proton and proton-nucleus collisions

 \rightarrow From threshold up to $p_{\text{beam}} = 30 \text{ GeV} \rightarrow \sqrt{s} = 7.6 \text{ GeV}$

• According to model predictions low energy domain is well suited for such studies

LHC energies: IC effects only at forward rapidities

- **BUT:** Factorization unclear at lower energies
	- Potential production via multiple gluon exchange?

J. Aichelin

Another challenge: Low production cross sections

 \rightarrow A few tens of nanobarns (for open charm)

→ Currently, at 30 GeV colission energy only poor data on pp and very little data on pA

CBM: Designed to handle high interaction rates (1-10 MHz)

- \rightarrow Detection becomes possible
- \rightarrow Excellent coverage for p-p and p-A reactions to measure inclusive processes, covering the forward and mid rapidity, where the effects are predicted to be largest
- The absorption of *J/ψ* and D mesons in nuclear matter can be studied in pA colissions
	- \rightarrow IC is expected to show a dependence of the production cross section on A
	- ➔ Nucleon PDFs can be accessed at large x (anti-shadowing and EMC effects)

Additional topic: Strangness production e.g. $p p \rightarrow \phi X$

→ Already well explored, but a combined high statistics study could reduce the systematics!

Complementarity to J-PARC:

Detector setup will measure mid-rapidity to backward production (complementary to CBM)

• Especially for pA reactions: Key interactions change between forward and backward region

Forward production:

• Interaction between the pre-resonance state of the charm pair and the nucleon is important because the state of a charm pair before forming J/*ψ* passes through the nucleus

Backward production:

- J/*ψ* passes through the nucleus, so the J/*ψ*-N interaction becomes important
- ➔ Effects lead to a difference between the forward and backward A dependence of the production cross section

Goal: Combine results from FAIR and J-PARC to obtain a complete understanding!

• **QCD** shows an approximate conformal symmetry at the classical level

Energy momentum tensor (EMT): $T^{\mu\nu} = -F^{\mu\lambda}F^{\nu}_{\ \lambda} + \frac{\eta^{\mu\nu}}{4}F^2 + i\bar{q}\gamma^{(\mu}D^{\nu)}q$

 \blacktriangleright Trace vanishes in the chiral limit: $\quad T^{\mu}_{\mu}=m\bar{q}q$

→ Classical massles QCD is invariant under scale transformations

$$
x\rightarrow \lambda x\ ,\ q(x)\rightarrow \lambda^{3/2} q(\lambda x)\ ,\ A_\mu(x)\rightarrow \lambda A_\mu(\lambda x)
$$

→ Quantization / renormalization generates a scale Λ_{QCD} that breaks scale invariance ➔ **Trace anomaly**

$$
\theta^{\mu}_{\mu} = \frac{\beta_{\rm QCD}}{2g} G^a_{\mu\nu} G^{\mu\nu}_a + m_u \bar{u} u + m_d \bar{d} d + m_s \bar{s} s + \ldots
$$

- Trace anomaly = Signal for the generation of hadron masses
- The mass of any hadron made of light quarks is essentially field ("binding") energy

• Separation of the various contributions leads to the sigma - terms:

 $\langle N(p)|m_u\bar{u}u+m_d\bar{d}d|N(p)\rangle = 40\ldots 70~{\rm MeV} \doteq \sigma_{\pi N}$

 $\langle N(p)|m_s\bar ss|N(p)\rangle=20\dots60\ \mathrm{MeV}$

- \rightarrow Bulk of the nucleon mass is generated by the gluon fields / field energy
	- **→ Central result of QCD**

• Recent calculations confirm that the trace anomaly of the QCD energy momentum tensor contributes around 92% of the proton mass

Yi-Bo Yang, Jian Liang, Yu-Jiang Bi, Ying Chen, Terrence Draper, Keh-Fei Liu, and Zhaofeng Liu, Proton Mass Decomposition from the QCD Energy Momentum Tensor. Phys. Rev. Lett., 121(21):212001 (2018)

Fangcheng He, Peng Sun, and Yi-Bo Yang. Demonstration of the hadron mass origin from the QCD trace anomaly. *Phys. Rev. D*, 104(7):074507 (2021)

- QCD dynamics are therefore the major source of the proton mass
	- \rightarrow More experimental input is needed to obtain better constraints

• Recent experiments mainly focus on the access to the trace anomaly based on near-threshold photo-production of vector mesons like ϕ and *J/ψ*

 $\gamma + p \rightarrow \phi + p$: $\gamma + p \rightarrow J/\psi + p$

Wei Kou, Rong Wang, and Xurong Chen. Extraction of proton trace anomaly energy from near-threshold ϕ and J/ψ photo-productions. Eur. Phys. J. A, 58(8):155, 2022

Example: GlueX @ JLab

• Forward (small t) differential d σ /dt cross section of J/ ψ can be related to the J/ψ –N scattering amplitude, and the nucleon mass via trace anomaly

$$
\left. \frac{d\sigma_{VN \to VN}}{dt} \right|_{t=t_{min}} = \frac{1}{64\pi} \frac{1}{m_V^2 \left(\lambda^2 - m_N^2\right)} \left| F_{VN} \right|^2
$$

Elastic scattering amplitude:

$$
F_{VN} = r_0^3 d_2 \frac{2\pi^2}{27} 2M_N^2 \underbrace{(1-b)}_{4\frac{M_a}{M_N}}
$$

 \rightarrow Extraction of trace anomaly and mass radius

Hadronic reactions:

- The interpretation of the traditionally used photo-production cross-section measurements strongly relies on the vector-meson dominance assumption (model dependent)
- A more model independent access to the trace anomaly and the mass radius may be provided by alternative approaches like p p scattering.
	- \rightarrow Exclusive vector-meson production: $p p \rightarrow p p V$ with $V = J/\psi$, ϕ , ω
	- \rightarrow Exclusive open charm production: $p p \rightarrow D \Lambda_c p$ like $D^0/\bar{D^0}\Lambda_c^+p$
		- \rightarrow Asymmetry of D^0/D^0
	- ➔ Measure the energy excess above the threshold for both reactions

- **SIS100 and CBM will provide …**
	- \rightarrow Unique kinematics + a relatively clean signal
	- ➔ A uniform acceptance of the Dalitz plot for exclusive final states with hadronic decays and also for p p J/ψ
		- ➔ Extractions via partial wave analyses --- Search for potential pentaquark candidates
- Also charmonium-nucleon final state interactions (FSI) could be accessed in p+A collissions
- \rightarrow Test of the color transparency based on energy and target (A) scans

BUT: Reaction dynamics at SIS100 energies need to be better understood

→ Hadronic vs partonic picture

Gravitational form factors and GPDs

- The QCD energy momentum tensor contains rich information about the structure of the nucleon
- Even richer structure if we discuss quark and gluon parts separately
	- \rightarrow Partonic decomposition of the nucleon mass and spin

$$
\langle P'|T_{q,g}^{\mu\nu}|P\rangle = \bar{u}(P')\bigg[A_{q,g}\gamma^{(\mu}\bar{P}^{\nu)} + B_{q,g}\frac{\bar{P}^{(\mu}i\sigma^{\nu)\alpha}\Delta_{\alpha}}{2M} + D_{q,g}\frac{\Delta^{\mu}\Delta^{\nu} - g^{\mu\nu}\Delta^{2}}{4M} + \bar{C}_{q,g}M\eta^{\mu\nu}\bigg]u(P)
$$

 $\frac{1}{2} = J_q + J_g$ • Ji sum rule for the nucleon spin

$$
J_{q,g} = \frac{1}{2}(A_{q,g} + B_{q,g})|_{\Delta \to 0}
$$

Relation to the second moments of the generalized parton distributions (GPDs)**:**

$$
J^{q} = \frac{1}{2} \int dx x (H_{q}(x) + E_{q}(x)) \qquad J^{g} = \frac{1}{2} \int dx x (H_{g}(x) + E_{g}(x))
$$

• *H, E* measurable in Deeply Virtual Compton Scattering (DVCS) at JLab, COMPASS, EIC,…

Gravitational form factors and GPDs

• The Fourier transform of the D-term can be interpreted as the radial pressure distribution inside a nucleon

$$
\langle P'|T^{ij}|P\rangle \sim (\Delta^i \Delta^k - \delta^{ik}\Delta^2)D(t)
$$

$$
T^{ij}(r) = \left(\frac{r^i r^j}{r^2} - \frac{1}{3}\delta^{ij}\right)s(r) + \delta^{ij}p(r)
$$

• GPDs provide indirect access to mechanical properties of the nucleon \rightarrow gravitational form factors

$$
\int xH(x,\xi,t)dx = M_2(t) + \frac{4}{5}\xi^2 d_1(t)
$$
\n
$$
\begin{matrix}\n\text{pressure and} \\
\text{mass}\n\end{matrix}
$$

- **→ The pressure distribution in the proton** can be accessed via Deeply Virtual Compton - Scattering
- X. D. Ji, PRD 55, 7114-7125 (1997) M. Polyakov, PL**B 555**, 57-62 (2016) V. Burkert, L. Elouadrhiri, F.-X. Girod, Nature 557, 396-399 (2018) K. Kumerički, Nature 570, E1-E2 (2019)

20

GPDs from p p → **p π B Processes**

- GPDs also provide a 3D picture of the nucleon in terms of the transverse position and the longitudinal momentum fraction of the partons
- ω SIS100: GPDs potentially accessible via 2 \rightarrow 3 reactions

21

S. Kumano, M. Strikman, K. Sudoh, Phys. Rev. D 80, 074003 (2009) [arXiv:0905.1453](https://arxiv.org/abs/0905.1453)

Factorisation for: $|s'|, |t'|, |u'| \gg M_N^2$

 $t'/s' = const.$ $|t| \ll M_N^2$

- Sensitive to classical twist-2 nucleon GPDs H, E, H and E
- Probe GPDs in the ERBL kinematic regime $(-\xi < x < \xi)$ not accessible in lepton scattering experiments
- Access to transition GPDs via Baryon resonances in the final state

GPDs from p p → **p π B Processes**

Predictions for a 30 GeV proton beam:

The measurement of –t' dependence could be used to explore the x-dependence of GPDs.

Qiu & Yu, JHEP 08 (2022) 103, PRD 107 (2023) 014007, arXiv:2305.15397

Whitepaper: Exploring Baryon Resonances with Transition Generalized Parton Distributions: Status and Perspectives, [arXiv:2405.15386](https://arxiv.org/abs/2405.15386) [hep-ph]

S. Kumano, M. Strikman, K. Sudoh, Phys. Rev. D 80, 074003 (2009)

p p → **p π⁰ p**

p p → **p π⁺ n**

p p → **p π- Δ++** → **p π- (p π⁺) p p** → **p π⁺ Δ⁰** → **p π⁺ (p π-) p p** → **p K⁺ Λ⁰** → **p K⁺ (p π-)**

+ many options with neutrons and or π⁰

But: Potential non-factorizing contributions!

22

GPDs from p p → **p π B Processes**

- Forward baryon B
- \cdot π N at \approx 90 $^{\circ}$ in CM

- Limits to t' at JPARC E16 (30 GeV/c protons) $\Theta_{\pi,\text{p}}$ > 15°, $\phi_{\pi-\text{p}}$ > 160°
- CBM covers complimentary kinematics $\Theta_{\pi,\mathsf{p}}$ < 25°, all $\phi_{\pi\text{-p}}$ NCAL for forward neutron
	- **→ Simulations needed for the acceptance** of the other particles

Summary and Outlook

Experiments at SIS100 can potentially …

- provide access to the intrinsic charm in the proton
	- \rightarrow Inclusive charm production: p p \rightarrow J/ ψ X p p \rightarrow D X
- access the trace anomaly of the QCD energy momentum tensor and contribute to the understanding of the origin of the nucleon mass
	- \rightarrow Exclusive charm and strangeness production: p p \rightarrow p p V V = J/ ψ , ϕ
- access GPDs and transition GPDs in the ERBL kinematic regime, which is complementary to lepton scattering experiments
	- \rightarrow 2 \rightarrow 3 reactions: p p \rightarrow p π B
- The kinematic coverage is forward focussed and therefore complementary to J-PARC
- Simulations are needed to check the acceptance and general feasibility for the individual reactions