QCD at FAIR workshop 2024 GSI, Darmstadt

Nucleon Structure at SIS100: Internal Charm, Trace Anomaly and GPDs

Stefan Diehl

Justus Liebig University Giessen University of Connecticut

November 12th 2024

Introduction and Overview

- The decomposition of global properties of the proton is a key issue in hadron physics
 - ➔ How can the mass and the spin be described in terms of individual contributions from quarks and gluons?
 - → Which components are really contributing to the protons wave function?
 - ➔ How can we access the mechanical properties of the proton, like the distribution of the pressure and shear forces?

Hadron beams at SIS100 can make important contributions to these questions:

- Contribution of intrinsic charm to the protons wave function
- Trace anomaly and its contribution to the proton mass
- Gravitational form factors and GPDs
 - \rightarrow 3D imaging of the nucleon and its resonances

• QCD describes the proton in terms of quarks and gluons:

2 up and 1 down quark + infinite number of quark-antiquark pairs (sea quarks)

- Quark sea: High energy collissions revealed both light and heavy quarks
 - → The mass of heavy quarks can be bigger than the proton mass!
- It is unclear, weather heavy quarks are part of the proton wave function
 → Intrinsic heavy quarks
- Theories predict, that the proton could have a sizable intrinsic component of the lightest heavy quark, the charm quark
 - BUT: Previous efforts in proving these arguements experimentally have not been fully conclusive

What is intrinsic charm?

"extrinsic charm"

"intrinsic charm"

Charm pair originates from the QCD DGLAP evolution

➔ Description by perturbative QCD

Charm pair was there

before the evolution

→ Strong non-perturbative effects

Model description:

- Proton described as a "bag" with five quarks: $|uudc\bar{c}>$
- Probability to find a charm-anticharm pair in the proton:

$$P = \frac{P_0}{[m_p^2 - M^2]^2} \qquad M^2 = \sum_{i=1}^5 \frac{m_i^2}{x_i} \qquad x_i = \text{ momentum of the parton i}$$

• Momentum distribution of the charm: Integrate P over $x_1 - x_4 \rightarrow P(x_5) = c(x)$

Stefan Diehl, JLU

QCD at FAIR workshop, 2024

Brodsky, Hoyer, Peterson, Sakai (80)

Charm component of the meson cloud:

Navarra, Nielsen, Nunes, Teixeira (96) Paiva, Nielsen, Navarra, Duraes, Barz (98) Carvalho, Duraes, Navarra, Nielsen (01)

 $m_D = 1870 MeV$ $m_\Lambda = 2280 MeV$ \Rightarrow Both have a similar momentum fraction: $x \sim 0.5$

→ These intrinsic charm fluctuations can be freed by a soft interaction

How can we measure the intrinsic charm?

1. Deep-inelastic scattering: Parton distributions

$$\sigma \propto F_2^c(x) \propto c(x)$$

EMC data for the deep-inelastic electromagnetic structure function F_2^c based on μ scattering:

→ Fits of DIS data favour 1-2 % intrinsic charm

Pumplin, Lai, Tung, hep-ph/0701220

How does it look like in hadronic collissions?

➔ Intrinsic charm is hard and will produce charm at high momentum

$$g \ g \to c \ \overline{c} \qquad q \ \overline{q} \to c \ \overline{c}$$

→ Intrinsic charm can be accessed in inclusive reactions

 $p p \rightarrow \Lambda_c X$ $p p \rightarrow J/\psi X$ $p p \rightarrow D X$ + other charm mesons

 \rightarrow Also p A and p \overline{p} collissions are of interest!

• Description based on collinear factorisation:

$$\frac{d \,\sigma^{p \, p \to c \bar{c} \, \bar{X}}}{d \, x_D \, d \, x_{\bar{D}} \, d^2 p_T} = \int_0^1 d \, x_1 \int_0^1 d \, x_2 \, f_g \, (x_1, Q^2) \, f_g \, (x_2, Q^2) \, \hat{\sigma}_{gg \to c \bar{c}} \, (x_1, x_2) \, D_c \, (x_D, p_T^2) \, D_c \, (x_{\bar{D}}, p_T^2)$$
PDFs
PDFs
PDFs

- LHCb: Evidence of intrinsic charm in Z+c-jet events
- Ratio of Z+c-jet to Z+all-jet events (PRL 128, 082001 (2022))
- Ratio at \sqrt{s} = 13 TeV is more consistent with calculations including intrinsic charm
- Differences between calculations with and without intrinsic charm get larger for the highest rapidity bin (in the most forward region)
 - → Up to 1% intrinsic charm content

QCD at FAIR workshop, 2024

→ LHCb results need to be included in global PDF fits for a final conclusion

Predictions for intrinsic charm in inclusive charmonium production

R. Vogt, Energy dependence of intrinsic charm production: Determining the best energy for observation, Phys. Rev. C, 106(2):025201 (2022)

→ Strongest IC contribution for pp collissions at lower beam energies and small p_T !

At SIS100 energies: IC contribution is in the range of 0.1 - 1.% compared to "standard" gluon-gluon and quark-gluon charm production processes

→ p_T and y distributions are needed → IC casuses a flattening of the p_T distribution

FAIR: Production of charm in proton-proton and proton-nucleus collisions

→ From threshold up to $p_{beam} = 30 \text{ GeV} \rightarrow \sqrt{s} = 7.6 \text{ GeV}$

• According to model predictions low energy domain is well suited for such studies

LHC energies: IC effects only at forward rapidities

- **BUT:** Factorization unclear at lower energies
 - Potential production via multiple gluon exchange?

J. Aichelin

Another challenge: Low production cross sections

→ A few tens of nanobarns (for open charm)

→ Currently, at 30 GeV colission energy only poor data on pp and very little data on pA

CBM: Designed to handle high interaction rates (1-10 MHz)

- → Detection becomes possible
- ➔ Excellent coverage for p-p and p-A reactions to measure inclusive processes, covering the forward and mid rapidity, where the effects are predicted to be largest
- The absorption of J/ψ and D mesons in nuclear matter can be studied in pA colissions
 - → IC is expected to show a dependence of the production cross section on A
 - → Nucleon PDFs can be accessed at large x (anti-shadowing and EMC effects)

Additional topic: Strangness production e.g. $p p \rightarrow \phi X$

➔ Already well explored, but a combined high statistics study could reduce the systematics!

Complementarity to J-PARC:

Detector setup will measure mid-rapidity to backward production (complementary to CBM)

• Especially for pA reactions: Key interactions change between forward and backward region

Forward production:

• Interaction between the pre-resonance state of the charm pair and the nucleon is important because the state of a charm pair before forming J/ψ passes through the nucleus

Backward production:

- J/ ψ passes through the nucleus, so the J/ ψ -N interaction becomes important
- ➔ Effects lead to a difference between the forward and backward A dependence of the production cross section

Goal: Combine results from FAIR and J-PARC to obtain a complete understanding!

• QCD shows an approximate conformal symmetry at the classical level

Energy momentum tensor (EMT): $T^{\mu\nu} = -F^{\mu\lambda}F^{\nu}_{\ \lambda} + \frac{\eta^{\mu\nu}}{4}F^2 + i\bar{q}\gamma^{(\mu}D^{\nu)}q$

→ Trace vanishes in the chiral limit: $T^{\mu}_{\mu} = m\bar{q}q$

→ Classical massles QCD is invariant under scale transformations

$$x o \lambda x \ , \ q(x) o \lambda^{3/2} q(\lambda x) \ , \ A_\mu(x) o \lambda A_\mu(\lambda x)$$

→ Quantization / renormalization generates a scale Λ_{QCD} that breaks scale invariance
 → Trace anomaly

$$heta^{\mu}_{\mu}=rac{eta_{ ext{QCD}}}{2g}G^a_{\mu
u}G^{\mu
u}_a+m_uar{u}u+m_dar{d}d+m_sar{s}s+\dots$$

- Trace anomaly = Signal for the generation of hadron masses
- The mass of any hadron made of light quarks is essentially field ("binding") energy

• Separation of the various contributions leads to the sigma - terms:

 $\langle N(p)|m_u \bar{u}u + m_d \bar{d}d|N(p) \rangle = 40...70 \text{ MeV} \doteq \sigma_{\pi N}$

 $\langle N(p)|m_sar{s}s|N(p)
angle=20\dots 60~{
m MeV}$

- ➔ Bulk of the nucleon mass is generated by the gluon fields / field energy
 - ➔ Central result of QCD

 Recent calculations confirm that the trace anomaly of the QCD energy momentum tensor contributes around 92% of the proton mass

Yi-Bo Yang, Jian Liang, Yu-Jiang Bi, Ying Chen, Terrence Draper, Keh-Fei Liu, and Zhaofeng Liu, Proton Mass Decomposition from the QCD Energy Momentum Tensor. Phys. Rev. Lett., 121(21):212001 (2018)

Fangcheng He, Peng Sun, and Yi-Bo Yang. Demonstration of the hadron mass origin from the QCD trace anomaly. *Phys. Rev. D*, 104(7):074507 (2021)

- QCD dynamics are therefore the major source of the proton mass
 - → More experimental input is needed to obtain better constraints

• Recent experiments mainly focus on the access to the trace anomaly based on near-threshold photo-production of vector mesons like ϕ and J/ψ

 $\gamma + \mathbf{p} \rightarrow \phi + \mathbf{p}$: $\gamma + \mathbf{p} \rightarrow \mathbf{J}/\psi + \mathbf{p}$

Wei Kou, Rong Wang, and Xurong Chen. Extraction of proton trace anomaly energy from near-threshold φ and J/ψ photo-productions. Eur. Phys. J. A, 58(8):155, 2022

Example: GlueX @ JLab

• Forward (small t) differential $d\sigma/dt$ cross section of J/ψ can be related to the J/ψ –N scattering amplitude, and the nucleon mass via trace anomaly

$$\left. \frac{d\sigma_{VN \to VN}}{dt} \right|_{t=t_{min}} = \frac{1}{64\pi} \frac{1}{m_V^2 \left(\lambda^2 - m_N^2\right)} \left| F_{VN} \right|^2$$

Elastic scattering amplitude:

$$F_{VN} = r_0^3 d_2 \frac{2\pi^2}{27} 2M_N^2 \underbrace{(1-b)}_{4\frac{M_a}{M_N}}$$

→ Extraction of trace anomaly and mass radius

Hadronic reactions:

- The interpretation of the traditionally used photo-production cross-section measurements strongly relies on the vector-meson dominance assumption (model dependent)
- A more model independent access to the trace anomaly and the mass radius may be provided by alternative approaches like p p scattering.
 - → Exclusive vector-meson production: $p p \rightarrow p p V$ with $V = J/\psi$, ϕ , ω
 - → Exclusive open charm production: $p p \rightarrow D \Lambda_c p$ like $D^0 / \bar{D^0} \Lambda_c^+ p$
 - → Asymmetry of $D^0/\bar{D^0}$
 - → Measure the energy excess above the threshold for both reactions

- SIS100 and CBM will provide ...
 - → Unique kinematics + a relatively clean signal
 - A uniform acceptance of the Dalitz plot for exclusive final states with hadronic decays and also for p p J/ψ
 - → Extractions via partial wave analyses --- Search for potential pentaquark candidates
- Also charmonium-nucleon final state interactions (FSI) could be accessed in p+A collissions
- → Test of the color transparency based on energy and target (A) scans

BUT: Reaction dynamics at SIS100 energies need to be better understood

→ Hadronic vs partonic picture

Gravitational form factors and GPDs

- The QCD energy momentum tensor contains rich information about the structure of the nucleon
- Even richer structure if we discuss quark and gluon parts separately
 - ➔ Partonic decomposition of the nucleon mass and spin

$$\langle P'|T_{q,g}^{\mu\nu}|P\rangle = \bar{u}(P') \Big[A_{q,g} \gamma^{(\mu} \bar{P}^{\nu)} + B_{q,g} \frac{\bar{P}^{(\mu} i \sigma^{\nu)\alpha} \Delta_{\alpha}}{2M} + D_{q,g} \frac{\Delta^{\mu} \Delta^{\nu} - g^{\mu\nu} \Delta^{2}}{4M} + \bar{C}_{q,g} M \eta^{\mu\nu} \Big] u(P)$$

- Ji sum rule for the nucleon spin $\ \ \ \frac{1}{2} = J_q + J_g$

$$J_{q,g} = \frac{1}{2} (A_{q,g} + B_{q,g})|_{\Delta \to 0}$$

Relation to the second moments of the generalized parton distributions (GPDs):

$$J^{q} = \frac{1}{2} \int dx x (H_{q}(x) + E_{q}(x)) \qquad J^{g} = \frac{1}{2} \int dx x (H_{g}(x) + E_{g}(x))$$

• H, E measurable in Deeply Virtual Compton Scattering (DVCS) at JLab, COMPASS, EIC,...

Gravitational form factors and GPDs

• The Fourier transform of the D-term can be interpreted as the radial pressure distribution inside a nucleon

$$\langle P'|T^{ij}|P\rangle \sim (\Delta^i \Delta^k - \delta^{ik} \Delta^2)D(t)$$

$$T^{ij}(r) = \left(\frac{r^i r^j}{r^2} - \frac{1}{3}\delta^{ij}\right)s(r) + \delta^{ij}p(r)$$

 GPDs provide indirect access to mechanical properties of the nucleon → gravitational form factors

$$\int xH(x,\xi,t)dx = M_2(t) + \frac{4}{5}\xi^2 d_1(t)$$
mass pressure and shear forces

- ➔ The pressure distribution in the proton can be accessed via Deeply Virtual Compton - Scattering
- X. D. Ji, PRD 55, 7114-7125 (1997)
 M. Polyakov, PLB 555, 57-62 (2016)
 V. Burkert, L. Elouadrhiri, F.-X. Girod, Nature 557, 396-399 (2018)
 K. Kumerički, Nature 570, E1-E2 (2019)

20

GPDs from $pp \rightarrow p\pi B$ Processes

- GPDs also provide a 3D picture of the nucleon in terms of the transverse position and the longitudinal momentum fraction of the partons
- **@ SIS100**: GPDs potentially accessible via $2 \rightarrow 3$ reactions

S. Kumano, M. Strikman, K. Sudoh, Phys. Rev. D 80, 074003 (2009) <u>arXiv:0905.1453</u>

Factorisation for: $|s'|, |t'|, |u'| \gg M_N^2$

t'/s' = const. $|t| \ll M_N^2$

- Sensitive to classical twist-2 nucleon GPDs $\, H, \, E, \, \widetilde{H} \, \, {\rm and} \, \, \widetilde{E}$
- Probe GPDs in the ERBL kinematic regime (-ξ < x < ξ) not accessible in lepton scattering experiments
- Access to transition GPDs via Baryon resonances in the final state

GPDs from $p p \rightarrow p \pi B$ Processes

Predictions for a 30 GeV proton beam:

The measurement of –t' dependence could be used to explore the x-dependence of GPDs.

Qiu & Yu, JHEP 08 (2022) 103, PRD 107 (2023) 014007, arXiv:2305.15397

Whitepaper: Exploring Baryon Resonances with Transition Generalized Parton Distributions: Status and Perspectives, arXiv:2405.15386 [hep-ph]

S. Kumano, M. Strikman, K. Sudoh, Phys. Rev. D 80, 074003 (2009)

 $p p \rightarrow p \pi^0 p$

 $p p \rightarrow p \pi^+ n$

 $p p \rightarrow p \pi^{-} \Delta^{++} \rightarrow p \pi^{-} (p \pi^{+})$ $p p \rightarrow p \pi^{+} \Delta^{0} \rightarrow p \pi^{+} (p \pi^{-})$ $p p \rightarrow p K^{+} \Lambda^{0} \rightarrow p K^{+} (p \pi^{-})$

 + many options with neutrons and or π⁰

But: Potential non-factorizing contributions!

22

GPDs from $p p \rightarrow p \pi B$ Processes

- Forward baryon B
- π N at ≈ 90° in CM

- Limits to t' at JPARC E16 (30 GeV/c protons) $\Theta_{\pi,p}$ > 15°, $\phi_{\pi-p}$ > 160°
- CBM covers complimentary kinematics $\Theta_{\pi,p}$ < 25°, all $\phi_{\pi-p}$ NCAL for forward neutron
 - Simulations needed for the acceptance of the other particles

Summary and Outlook

Experiments at SIS100 can potentially …

- provide access to the intrinsic charm in the proton
 - → Inclusive charm production: $p p \rightarrow J/\psi X$ $p p \rightarrow D X$
- access the trace anomaly of the QCD energy momentum tensor and contribute to the understanding of the origin of the nucleon mass
 - → Exclusive charm and strangeness production: $p p \rightarrow p p V$ V = J/ ψ , ϕ
- access GPDs and transition GPDs in the ERBL kinematic regime, which is complementary to lepton scattering experiments
 - → 2 → 3 reactions: p p → p π B
- The kinematic coverage is forward focussed and therefore complementary to J-PARC
- Simulations are needed to check the acceptance and general feasibility for the individual reactions