

Probing final state interactions with femtoscopy

Hanna Zbroszczyk

Warsaw University of Technology

QCD at FAIR workshop, Darmstadt, November 11-14, 2024

Road map

QCD phase diagram

Low μ_B , hight T:

- Cross-over transition from hadronic to quark matter - comprehensive studies of QGP properties
- No critical point anticipated for $\mu_B/T < 3$ (LQCD)

High μ_B , low T:

- Unknown **phase structure** (first-order phase transition, critical point possible, mixed phases, new phases, ...)
- Properties of matter to determine
- Characteristics of hadrons
- Equation of State (EoS) to establish
- Neutron Star (NS)

Bazavovet al.[HotQCD], PLB 795 (2019) 15-21 Dinget al., [HotQCD], PRL 123 (2019) 6, 062002 Borsanyiet al., PRL125(2020)5,052001 Isserstedt et al. PRD 100 (2019) 074011 Gao, Pawlowski, PLB 820 (2021) 136584

NS puzzle

- Observation of NS indicates their mass $\sim 2M_{\odot}$ (Shapiro-delay: Post-Keplerian parameters of orbits)
- Hyperons: Expected in core of NS, the conversion of N into Y is energetically favorable
- Appearance of Hyperons: The presence of Y alleviates Fermi pressure, resulting in a EoS and a reduction in NS mass (inconsistent with observations)

Can they still be considered as components of NS?

• **Proposed Solution:** A mechanism that provides additional pressure to ensure a stiffer EoS

One emergent mechanism involves many-body interactions, such as YN, YY, NNY, NYY

(Other: hypersonic three-body forces, Quark Matter Core - a transition to deconfined phase below hyperon threshold in density)

Neutron star (NS) puzzle

H.Tamura, JPS Conf. Proc. , 011003 (2014)

"To establish the EoS applicable to the neutron star has been one of the most important subjects in nuclear physics for a long time but has not been achieved yet." T. Hamura

Hanna Zbroszczyk, QCD at FAIR Workshop, November 11-14, 2024, GSI, Darmstadt, Germany

Neutron star (NS) puzzle

H.Tamura, JPS Conf. Proc. , 011003 (2014)

"To establish the EoS applicable to the neutron star has been one of the most important subjects in nuclear physics for a long time but has not been achieved yet." T. Hamura

Hypernuclei are pivotal for the EoS of the NS

- How do nuclei and hyper-nuclei form?
- What are their characteristics?
- How do nuclei (N) and hyperons (Y) interact?

Hanna Zbroszczyk, QCD at FAIR Workshop, November 11-14, 2024, GSI, Darmstadt, Germany

NSM and HIC

Top row: simulation of **NS mergers (NSM)** 2 NSs of 1.35 M \odot each, merging into a single object (2R ~ 10 km, $n \sim 5n_0$, $T \le 20$ MeV). Overlap region: $t \sim 20$ ms, $n \sim 2n_0$, $T \sim 75$ MeV

- max. temperature
- max. density

Bottom row: non-central **Au+Au collision** at $\sqrt{s_{NN}} = 2.42$ GeV $n \simeq 3n_0$, $T \simeq 80$ MeV

Artist's depiction of a neutron star collision after inspiral, NASA/Swift/Dana Berry

Space and time scales vastly contrasting (km-NS / fm-HIC -18 orders of magnitude; duration - 20 orders of magnitude)

Similar **densities** and **temperatures** achieved

HADES, Nature Phys. 15, 1040–1045 (2019)

Hanna Zbroszczyk, QCD at FAIR Workshop, November 11-14, 2024, GSI, Darmstadt, Germany

Light nuclei production mechanisms

- 1) A systematic measurement of **p-p**, **p-d**, and **d-d** correlations may tell us whether **deuterons** are directly emitted from the fireball or formed due to final-state interactions
- 2) It is important to understand if we can consider two- or more-body interactions
- 3) Learning more about deuteron formation, we can move towards other light nuclei

... the method to probe geometric and dynamic properties of the source (emission region, range of correlations-interactions, phase-space cloud, ...)
Femtoscopy does not measure the whole source, but homogeneity length.

Classic femtoscopy

2R

Femtoscopy (originating from HBT):

the method to probe **geometric** and **dynamic** properties of the source

Space-time properties (10⁻¹⁵m, 10⁻²³s) determined thanks to two-particle correlations:
Quantum Statistics (Fermi-Dirac, Bose-Einstein);
Final State Interactions (Coulomb, strong)

determined assumed measured $C(k^*, r^*) = \int S(r^*) |\Psi(k^*, r^*)|^2 d^3r = \frac{Sgnl(k^*)}{Bckg(k^*)}$

 $S(r^*)$ – source function

 k^* - momentum of the first particle in the Pair Rest Frame reference

 $\Psi(k^*, r^*)$ – two-particle wave function (includes e.g. FSI interactions)

 $\frac{Sgnl(k^*)}{Bckg(k^*)}$ - correlation function

Gateway to study interactions

p2

2**R**

If we assume we know the **source function**, measured **correlations** are used to determine **interactions in the final state**.

Space-time properties $(10^{-15}m, 10^{-23}s)$ determined thanks to two-particle correlations: **Quantum Statistics** (Fermi-Dirac, Bose-Einstein); **Final State Interactions** (Coulomb, strong)

assumed determined measured $C(k^*, r^*) = \int S(r^*) |\Psi(k^*, r^*)|^2 d^3r^* = \frac{Sgnl(k^*)}{Bckg(k^*)}$ $S(r^*) - \text{source function}$

*k** - momentum of the first particle in the Pair Rest Frame reference

 $\Psi(k^*, r^*)$ - two-particle wave function (includes e.g. FSI interactions) $\frac{Sgnl(k^*)}{Bckg(k^*)}$ - correlation function

Road map

What are we pursuing and why?

Method to use

Physics motivation

Femtoscopy

What do we know now?

N, Y interactions

(incl. 3-body approach)

Production mechanism
3-dim. form

NY $(p - \Lambda, d - \Lambda)$ interactions at STAR

p-A: $|\psi(r,k)|^2 \rightarrow \frac{1}{4} |\psi_0(r,k)|^2 + \frac{3}{4} |\psi_1(r,k)|^2$ **d-A:** $|\psi(r,k)|^2 \rightarrow \frac{1}{3} |\psi_{1/2}(r,k)|^2 + \frac{2}{3} |\psi_{3/2}(r,k)|^2$

• Different spin states with different f_0 and d_0 parameters • p- Λ correlation: current statistics is not enough to

separate two spin states \rightarrow spin-averaged fit

★ d-Λ correlation: very different f_0 for (D) and (Q) are predicted → Spin-separated fit

Different spin states with different FSI

parameters

p-Λ correlation: currently spin-averaged fit **d-Λ correlation:** spin-separated fit

NY $(p - \Lambda, d - \Lambda)$ interactions at STAR

Source size extracted from the source assuming Gaussian shape;

Separation of emission source from the parameters of the final state interaction;

H. W. Hammer, Nucl. Phys. A 705 (2002) 173 A. Cobis, et al. J. Phys. G 23 (1997) 401 I. Haidenbauer, Phys.Rev.C 102 (2020) 3, 034001 M. Schäfer, et al. Phys.Lett.B 808 (2020) 135614 G. Alexander, et al. Phys. Rev. 173 (1968) 1452 I. Haidenbauer, et al. Nucl. Phys. A 915 (2013) 24 F. Wang, et al. Phys.Rev.Lett. 83 (1999) 3138

FAIR Workshop, November 11-14, 2024, GSI, Darmstadt, Germany

NY $(p - \Lambda)$ interactions at HADES

Hanna Zbroszczyk, QCD at FAIR Workshop, November 11-14, 2024, GSI, Darmstadt, Germany

NY $(p - \Lambda)$ interactions at ALICE

NN, NY, YY interactions at ALICE

Adding more strangeness content to constrain EoS valid at all measured combinations

3-body interactions at ALICE

3-body interactions at ALICE

Three-particle emission source implemented as three single-particle emitters constrained to data

- Feed-down corrections included
- Gauss NLO19 (600): 40% effect of threebody interactions
- Most interesting region $Q_3 < 100$ MeV/c not yet accessed by data

Hanna Zbroszczyk, QCD at FAIR Workshop, November 11-14, 2024, GSI, Darmstadt, Germany

Road map

What are we pursuing and why?

Method to use

Physics motivation

Femtoscopy

What do we know now?

N, Y interactions

 (incl. 3-body approach)
 Production mechanism
 3-dim. form

Light nuclei production at STAR

Relative Momentum k* (MeV/c)

First measurement of **protondeuteron** and **deuterondeuteron** correlation functions from STAR **Proton-deuteron** and **deuteron-deuteron** correlations qualitatively described by Lednicky-Lyuboshitz model Deuteron-deuteron correlations described better by the model including **coalescence**. Light nuclei are likely to be formed via coalescence

Light nuclei seen as many-body system at ALICE

Coulomb only: disagree!

Argonne v18(2N) + Urbana IX (genuine three-body force) potentials^[1,2]

s-wave only: more repulsion

all partial waves up to d-waves: excellent description ($n_{\sigma} \sim 1$ for k^* up to 400 MeV/c)

Pionless EFT NLO (s+p+d waves): Agree with data within n_{σ} ~2.5 for $k^* < 120$ MeV/*c*

ALICE: arXiv:2308.16120 [1] B. R. B. Wiringa et al. Phys. Rev. C 51, 38 [2] B. S. Pudliner et al. Phys. Rev. Lett. 74, 4396

Dynamics of the p–(pn) triplet and higher partial waves at short distances!

Road map

What are we pursuing and why?

Method to use

Physics motivation

Femtoscopy

What do we know now?

N, Y interactions (incl. 3-body approach)
Inclusion of K
3-dim. form

Bertsch-Pratt parametrization, 3 and 1 dimensions

- \rightarrow R_{side} spatial source evolution in the transverse direction
- $\rightarrow R_{out}$ related to spatial and time components
- $\rightarrow R_{out}/R_{side}$ signature of phase transition
- \rightarrow R_{out}²- R_{side}² = $\Delta \tau^2 \beta_t^2$; $\Delta \tau$ emission time
- \rightarrow R_{long} temperature of kinetic freeze-out and source lifetime
- $long \rightarrow$ beam direction
- *out* \rightarrow pair transverse momentum direction
- $side \rightarrow perpendicular to long and side$

3D case is considered if statistics is enough and two-particle correlations are easy to describe (Quantum Statistics and Coulomb FSI).It is challenging for systems interacting strongly.1D case is considered then (assuming spherical source).

How to measure phase transition?

vHLLE (3+1)-D viscous hydrodynamics: Iu. Karpenko, P. Huovinen, H. Petersen, M. Bleicher; Phys.Rev. C 91, 064901 (2015), arXiv:1502.01978, 1509.3751

HadronGas + Bag Model $\rightarrow 1^{\text{St}}$ order PT ; P.F. Kolb, et al, PR C 62, 054909 (2000)

Chiral EoS \rightarrow crossover PT (XPT); J. Steinheimer, et al, J. Phys. G 38, 035001 (2011)

vHLEE+UrQMD model verify **sensitivity of HBT measurements to the first-order phase tran**sition

Phys. Rev. C 96 (2017) no.2, 024911

Current coverage of the QCD phase diagram

CBM / HADES experimental exploration of the region $\mu_B \sim 520 - 830 MeV$

	$\sqrt{s_{NN}}$ (GeV)	μ_B (MeV)
HADES@SIS18	2-2.5	830-760
CBM@SIS100	2.3-5.3	785-520
NA61/SHINE@SPS	5.1-17.3	530-220
STAR-COLL@RHIC	7.7-200	400-22
STAR-FXT@RHIC	3-13.7	700-265

A. Andronic, P. Braun- Munzinger, K. Redlich and B. J. Stachel, Nature 561, no. 7723, 321 (2018)

Gao, Pawlowski, PLB 820 (2021) 136584 Fu et al., PRD 101 (2020), 054032

Gunkel, Fischer, PRD 104 (2021) 5, 054022

High μ_B facilities

CBM / HADES@ SIS100 (>2028)

MPD, MB@N@NICA

GSI GmbH – Helmholtzzentrum für Schwerionenforschung FAIR GmbH – Facility for Antiproton and Ion Research

GSI, existing (upgraded to integrate with FAIR)

Hanna Zbroszczyk for the CBM Collaboration, 17th Workshop on Particle Correlations and Femtoscopy, November 4-8, 2024, Toulouse, France

High μ_B facilities

HADES@SIS18 NA61/SHINE@SPS NA60@SPS(>2030) Interaction rate [Hz] ₉01 STAR@RHIC Heavy ion collisions CBM@FAIR SIS100 ---⊽ J-PARC-HI CEE+@HIAF NA60+@SPS 0.....0......0 ALICE3@LHC LAMPS @RAON ALICE@LHC sPHENIX@RHIC HADES@GS MPD@NICA STAR FXT 10³ STAR@RHIC CBM / HADES: Collider expe operations at 10² $\sqrt{s_{NN}} \sim 2 - 5 \ GeV$ 10 4 5 6 7 10 20 30 200 2 100 3 Collision energy $\sqrt{s_{NN}}$ [GeV]

CBM / HADES@ SIS100 (>2028)

T. Galatyuk, NPA 982 (2019), update 2024 <u>https://</u>

Hanna Zbroszczyk, QCD at FAIR Workshop, November 11-14, 2024, GSI, Darmstadt, Germany

MPD, MB@N@NICA

CEE@HIAF (>2027)

What are we pursuing and why?

Method to use

To answer fundamental questions about the structure of the QCD phase diagram at high μ_B and to explore neutron stars

.. that sensitive to the interactions in the final states and significant for determination of the EoS

What do we know now?

Already operating at high μ_B experiments are complete and exploration of new physics needs new facilities

Who else is involved?

Many world-wide existing and planned facilities complement each other programs

Perspectives for future

CBM plans to start these exploration in 2028 to answer fundamental questions in the first year of running

re we pursuing and why?

Method to use

To answer fundamental questions about the structure of the QCD phase diagram at high μ_B and to explore neutron stars

.. that sensitive to the interactions in the final states and significant for determination of the EoS

What do we know now?

Already operating at high μ_B experiments are complete and exploration of new physics needs new facilities

Who else is involved?

Many world-wide existing and planned facilities complement each other programs

Perspectives for future

CBM plans to start these exploration in 2028 to answer fundamental questions in the first year of running

35

Extra slides

Strange hadronic matter in the inner core

The inner core of the neutron star is totally unknown. One of the most probable scenarios is that hyperons (baryons with strange quarks) appear at a density larger than (2–3) ρ_0

 Λ hyperons, being free from Pauli exclusion principle by neutrons, are allowed to stay at the bottom of the attractive nuclear potential made by neutrons. When the kinetic energy of a neutron on the Fermi surface of the degenerate neutron matter exceeds the Λ -n mass difference of 176 MeV, it converts into a Λ hyperon via weak interaction.

Fig. 3. (1) Energies of neutrons and Λ hyperons in high density neutron matter confined in the potential made by gravity. See text for details. (2) Excitation spectrum of a Λ hypernucleus $^{89}_{\Lambda}$ Y via the (π^+, K^+) reaction on 89 Y target [6].

Lednicky-Lyuboshitz model

The correlation function can be calculated analytically by averaging Ψ over the total spin S and the distribution of the relative distances $S(r^*)$ Ref: Lednicky, Richard & Lyuboshits, V.L.. (1982). Sov.

$$C(k^*) = \int S(r^*) |\Psi(r^*, k^*)|^2 d^3r$$

The normalized pair separation distribution (source function) $S(r^*)$ is assumed to be Gaussian,

$$S(r^*) = (2\sqrt{\pi}r_0)^{-3}e^{-\frac{r^{*2}}{4r_0^2}},$$

$$\Psi^S(r^*,k^*) = e^{-ik^*r^*} + f^S(k^*)\frac{e^{ik^*r^*}}{r^*} \qquad f^S(k^*) = (\frac{1}{f_0^S} + \frac{1}{2}d_0^Sk^{*2} - ik^*)^{-1} \qquad \text{Strong}$$

$$|\Psi^C(r^*,k^*)| = \sqrt{A_C}e^{-ik^*r^*}F(-i\eta,1,i\zeta) \qquad A_C(\eta) = \frac{2\pi}{k^*a_c}(exp(\pm \frac{2\pi}{k^*a_c}) - 1)^{-1} \quad \text{Coulomb}$$

F- confluent hypergeometric function

 f_0 and d_0 - parameters of strong interaction.

Theoretical correlation function (k^*) depends on: R, f_0 and d_0 .

f₀ - the scattering length, determines low-energy scattering.

The elastic cross section, σ_e , (at low energies) determined by the scattering length, $\lim_{k \to 0} \sigma_e = 4\pi f_0^2$

d₀ - the effective range, corresponds to the range of the potential (simplified scenario - the square well potential.

For identical systems one has to include QS (Fermi-Dirac / Bose-Einstein) as well.

Postdoctoral Research Associate positions in Experimental Heavy-Ion Physics

Warsaw U. of Tech. (main) • Europe

hep-ex

nucl-ex PostDoc • Experiments: GSI-FAIR-CBM, BNL-RHIC-STAR

() Deadline on Dec 31, 2024

https://inspirehep.net/jobs/2811921

Job description:

The Heavy-Ion Reaction Group (HIRG) at the Faculty of Physics at Warsaw University of Technology participates in the experiments STAR at BNL, CBM at FAIR, HADES at GSI, ALICE, and NA61/SHINE at CERN.

The STAR, HADES, and CBM groups specialize in two-particle femtoscopic correlation analysis measurements. We closely cooperate with the ALICE group at WUT.

The successful candidates will work with Professor Hanna Zbroszczyk on the STAR experiment at RHIC, the HADES experiment at SIS18, or the CBM experiment at SIS100, focusing on studies of two-particle correlations. One position can relate up to 2 experiments. Responsibilities include data analysis and publication of results, collaboration service work, mentoring students, and supporting the Heavy Ion Reaction Group's research activities. Occasional travel to BNL and/or GSI will be required. The successful candidates are expected to lead studies of femtoscopic correlations in the search for STAR, HADES, or CBM experiments. The contract can be extended up to 24 months, provided a satisfactory evaluation outcome after the first 12 months.

Duties and Responsibilities:

- Taking part in the analysis of heavy-ion collision RHIC data recorded by the STAR detector to study two-particle correlations or
- Taking part in the analysis of heavy-ion collision SIS-18 data recorded by the HADES detector to study two-particle correlations or
- Taking part in the Monte Carlo data analysis for the CBM experiment
- Joining the STAR/HADES or CBM collaborations and the relevant Physics Working Group, participating in weekly deliberations and active participation in its meetings (at least every few weeks);
- Taking part in data-taking (experimental shifts);
- Presentation of results at meetings and conferences, as well as writing scientific articles and publishing papers in peer-reviewed journals;
- Maintaining close cooperation with colleagues in the PWG group will be essential for the progress of all stages of the project

Hanna Zbroszczyk for the CBM Collaboration, 17th Workshop on Particle Correlations and Femtoscopy, November 4-8, 2024, Toulouse, France

Lednicky-Lyuboshitz model

Model		$f_0^{S=0}$ (fm)	$f_0^{S=1}$ (fm)	$d_0^{S=0}$ (fm)	$d_0^{S=1}$ (fm)	n _σ
ND [77]		1.77	2.06	3.78	3.18	1.1
NF [78]		2.18	1.93	3.19	3.358	1.1
NSC89 [79]		2.73	1.48	2.87	3.04	0.9
NSC97 [80]	а	0.71	2.18	5.86	2.76	1.0
	b	0.9	2.13	4.92	2.84	1.0
	с	1.2	2.08	4.11	2.92	1.0
	d	1.71	1.95	3.46	3.08	1.0
	e	2.1	1.86	3.19	3.19	1.1
	f	2.51	1.75	3.03	3.32	1.0
ESC08 [81]		2.7	1.65	2.97	3.63	0.9
χEFT	LO [25]	1.91	1.23	1.4	2.13	1.8
	NLO [26]	2.91	1.54	2.78	2.72	1.5
Jülich	A [82]	1.56	1.59	1.43	3.16	1.0
	J04 [83]	2.56	1.66	2.75	2.93	1.4
	J04c [83]	2.66	1.57	2.67	3.08	1.1

S. Acharya *et al.* Phys. Rev. C 99, 024001 – Published 13 Feb 2019 https://doi.org/10.1103/PhysRevC.99.024001

parameter scan boundaries : f_0 [0.01, 5.0], d_{0s} [0.01, 2.0] and d_{0t} [0.01, 5.0]

Discover the world at Leiden University

Light nuclei correlation: p-d, d-d correlations

Doublet spin state ${}^2S_{1/2}$		Quartet s	Ref	
Scattering Length	Effective Range	Scattering Length	Effective Range	
1.30 +/- 0.2 fm	-	11.40 +/- 1.5 fm	2.05 +/ 0.25 fm	Oers, Brockmann et al, Nucl.Phys.A 561-583
2.73 +/- 0.1 fm	2.27 +/- 0.12 fm	11.88 +/- 0.25 fm	2.63 +- 0.02 fm	J. Arvieux, Nucl.Phys.A 221 253-268 (1973)
4.0 fm	-	11.1 fm	-	E. Huttel et al, Nucl.Phys.A 406 443-455
0.024 fm	-	13.7 fm	-	A. Kievsky et al, PLB 406 292-296 (1997)
-0.13 +/- 0.04 fm	-	14.70 +/- 2.30 fm	-	T. C. Black et al, PLB 471 103-107 (1999)

⇒ Triplet spin (S=1) : irrelevant for s-wave
 ⇒ Modify the component used in L-L model

$$C_{dd} = \frac{1}{6}C_{singlet,S=0} + \frac{5}{6}C_{quintet,S=2}$$