

Quark-diquark correlations in baryons

Gernot Eichmann

University of Graz

QCD at FAIR Workshop 2024 GSI, Nov 11, 2024

Diquark correlations in baryons:

"Missing resonances": nonrelativistic quark model predicts too many states, pointlike diquarks reduce them by freezing one excitation mode. New states in PDG call this into question

Anselmino et al., RMP 65 (1993), Santopinto, PRC 72 (2005), Nikonov, Anisovich, Klempt, Sarantsev, Thoma, PLB 662 (2008)

Dominance of **qq forces inside baryons**: non-pointlike diguark correlations, diguarks exchange roles

GE, Sanchis-Alepuz, Williams, Alkofer, Fischer, PPNP 91 (2016), Barabanov et al., PPNP 116 (2021)

Diquark mass differences can be studied on lattice Francis, de Forcrand, Lewis, Maltman, JHEP 05 (2022)

- Diquark correlations in multiquark states: Tetraquarks as compact diquark-antidiquark states? Jaffe, PRD 15 (1977), Esposito, Pilloni, Polosa, Phys. Rept 668 (2017), Guo, Hanhart, Meißner et al., RMP 90 (2018)...
- Phases at high baryon densities, QCD-like theories (SU(2)), ...

meson molecule

Functional methods

• Hadronic **bound-state equations** (Bethe-Salpeter & Faddeev eqs)

- "QFT analogue of Schrödinger eq."
 - → hadron masses & "wave functions"
 - \rightarrow spectroscopy calculations
- Structure calculations: form factors, PDFs, GPDs, TMDs, two-photon processes, ...

 Ingredients: QCD's n-point functions, computed from DSEs (quantum eqs. of motion) or FRG (functional renormalization group)

→ Dynamical mass generation, gluon mass gap, confinement, QCD phase diagram, ...

Baryons

Gernot Eichmann (Uni Graz)

• Quark-diquark (two-body) equation

GE, Fischer, Sanchis-Alepuz, PRD 94 (2016)

Oettel et al., PRC 58 (1998), GE et al., Ann. Phys. 323 (2008), Cloet et al., FBS 46 (2009), Segovia et al., PRL 115 (2015)

Three-guark and guark-diguark results very similar

Diquark clustering in baryons? Barabanov et al., Prog. Part. Nucl. Phys. 116 (2021)

Diquarks 101

0, 1

0, 1

0

1

Λ, Σ

Λ, Σ

Λ

Σ

nns

 \wedge

n = u, d

n [ns]

n {ns}

s [nn]

s {nn}

Λ: n [ns], n {ns}, s [nn]
 Σ: n [ns], n {ns}, s {nn}

Diquarks 101

Mesons and diquarks are closely related:

attractive		attractive		
$3\otimes\overline{3}=1$	\otimes 8	$3\otimes3=\overline{3}$	$\oplus 6$	

In BSE this comes out naturally: Maris, FBS 32 (2002)

- = K

Lowest-lying diquarks are dominant for ground-state octet & decuplet baryons

pseudoscalar mesons ⇔ scalar diquarks (~0.8 GeV) vector mesons ⇔ axialvector diquarks (~1 GeV)

Higher-lying diquarks are subleading, but contribute to excited states & remaining channels

 scalar mesons
 ⇔
 pseudoscalar diquarks (~1.2 GeV)

 axialvector mesons
 ⇔
 vector diquarks (~1.3 GeV)

In RL, these are too strongly bound; simulate beyond-RL effects by (one) strength parameter c

Roberts, Chang, Cloet, Roberts, FBS 51 (2011) GE, Fischer, Sanchis-Alepuz, PRD 94 (2016)

Strange baryons

GE, Fischer, FBS 60 (2019), Fischer, GE, PoS Hadron 2017

Strange baryons

New states from Bonn-Gatchina Sarantsev, Matveev, Nikonov, Anisovich, Thoma, EPJA 55 (2019)

GE, Fischer, FBS 60 (2019), Fischer, GE, PoS Hadron 2017

Heavy baryons

Quark content	q-dq	Isospin	contributes to
nnc	n [nc]	0, 1	$\Lambda_{\rm c}$, $\Sigma_{\rm c}$
\wedge	n {nc}	0, 1	$\Lambda_{ m c}$, $\Sigma_{ m c}$
n = u. d	c [nn]	0	Λ_{c}
	c {nn}	1	Σ_{c}

Sometimes these are assumed as dominant components, e.g. **J-PARC** charm baryon spectroscopy program (high-p) Kim, Hosaka, Kim, Noumi, Shirotori, PTEP 2014 (2014), 10, 103D01, Shim, Hosaka, Kim, PTEP 2020 (2020) 5, 053D01

Heavy baryons

Quark-diquark BSE would not work under this assumption, e.g., Σ_c :

n[nc], n{nc} necessary, otherwise no equation. Presumably these are also dominant: cannot switch off n[nc], n{nc}, but c{nn}

Analogous for $\Lambda_{\rm c}$ and hyperons

Results: wave function contributions Torcato, Arriaga, GE, Peña, FBS 64 (2023)

Gernot Eichmann (Uni Graz)

Heavy baryons

Quark-diquark BSE would not work under this assumption, e.g., Σ_c :

n[nc], n{nc} necessary, otherwise no equation. Presumably these are also dominant: cannot switch off n[nc], n{nc}, but c{nn}

Results: **spectrum** Torcato, Arriaga, GE, Peña, FBS 64 (2023)

see also: Yin, Chen, Krein, Roberts, Segovia, PRD 100 (2019)

Analogous for Λ_c and hyperons

How to test this?

Form factors:

Couple currents (photons, pions, ...) to all possible places: quarks, diquarks, exchange diagrams, seagulls

e.g. $\Sigma_c \rightarrow \Lambda_c$ transition form factors (analogous to $\Sigma \rightarrow \Lambda$)

How to test this?

Form factors:

Couple currents (photons, pions, ...) to all possible places: quarks, diquarks, exchange diagrams, seagulls

e.g. $\Sigma_c \to \Lambda_c$ transition form factors (analogous to $\Sigma \to \Lambda)$

+ exchange + seagull diagrams

Timelike form factors:

Quark-photon vertices contain vector-meson poles:

Analogous to hadronic vacuum polarization (R ratio):

Form factors

Many form factor calculations in qqq or q(qq) approaches available:

Q² [GeV²]

Q² [GeV²]

Gernot Eichmann (Uni Graz)

Backup slides

Form factors

Like for spectrum, similar results from qqq and q(qq) approaches, e.g. Δ electromagnetic form factors:

Four-quark states

Four-quark states

Binding energies (ground states):

Four-quark states

Relativistic effects

Orbital angular momentum: clear traces of nonrelativistic quark model, but strong relativistic effects (in some cases even dominant)

Relativistic contributions even up to bottom baryons! Qin, Roberts, Schmidt, PRD 97 (2018)

Mesons

 Pion is Goldstone boson: m_π² ~ m_q

• Light meson spectrum beyond rainbow-ladder

Williams, Fischer, Heupel, PRD 93 (2016)

GE, Sanchis-Alepuz, Williams, Alkofer, Fischer, PPNP 91 (2016)

Bottomonium spectrum
 Fischer, Kubrak, Williams, EPJ A 51 (2015)

· Pion transition form factor

GE, Fischer, Weil, Williams, PLB 774 (2017)

Towards ab-initio

• Goal: go towards ab-initio calculations by calculating higher n-point functions

...,

Williams, Fischer, Heupel, PRD 93 (2016), Cyrolet al., PRD 97 (2018), Oliveira, Silva, Skullerud, Sternbeck, PRD 99 (2019), Aguilar et al., EPI C 80 (2020), Huber, PRD 101 (2020), Qin, Roberts, Chin. Phys. Lett. 38 (2021), GF, Pavlovski, Silva, PRD 104 (2021),

• Glueball spectrum agrees with lattice QCD Huber, Fischer, Sanchis-Alepuz, EPJ C 80 (2020), EPJ C 81 (2021)

Coupled Yang-Mills DSEs

Huber, PRD 101 (2020), GE, Pawlowski, Silva, PRD 104 (2021)

