Opportunies with hadron beams for light baryon spectroscopy

November 11, 2024 | Deborah Rönchen | Institute for Advanced Simulation, Forschungszentrum Jülich

with contribution by M. Döring

Supported by DFG, MKW NRW HPC support by Jülich Supercomputing Centre

Connect experiment $\&$ QCD in the non-perturbative regime

How do quarks get confined in hadrons?

Experimental study of hadronic reactions

Theoretical predictions of excited hadrons e.g. from relativistic quark models: to a particular shell, we additionally summarized the explicit positions of the excited model states in tables 11, 12,

Löring et al. EPJ A 10, 395 (2001), experimental spectrum: PDG 2000 \sim

In the past: elastic or charge exchange πN scattering

"missing resonance problem"

In recent years: photoproduction reactions

large data base, high quality polarization observables Prog.Part.Nucl.Phys. 125 (2022), Prog.Part.Nucl.Phys. 111 (2020)

In the future: electroproduction reactions

 10^5 data points for πN , ηN , KY , $\pi \pi N$ Review: e.g. Prog.Part.Nucl.Phys. 67 (2012)
of the Helmholtz Association Member of the Helmholtz Association

Connect experiment & QCD in the non-perturbative regime

How do quarks get confined in hadrons?

Experimental study of hadronic reactions

In the past: elastic or charge exchange πN scattering

■ "missing resonance problem"

In recent years: photoproduction reactions

large data base, high quality polarization observables Prog.Part.Nucl.Phys. 125 (2022), Prog.Part.Nucl.Phys. 111 (2020)

In the future: electroproduction reactions

10⁵ data points for πN , ηN , KY , $\pi \pi N$ Review: e.g. Prog.Part.Nucl.Phys. 67 (2012)

Theoretical predictions of excited hadrons ... or lattice calculations (with some limitations):

Connect experiment & QCD in the non-perturbative regime

How do quarks get confined in hadrons?

Theoretical predictions of excited hadrons ... or Dyson-Schwinger approaches:

In the past: elastic or charge exchange πN scattering

"missing resonance problem"

In recent years: photoproduction reactions

large data base, high quality polarization observables Prog.Part.Nucl.Phys. 125 (2022), Prog.Part.Nucl.Phys. 111 (2020)

In the future: electroproduction reactions

10⁵ data points for πN , ηN , KY , $\pi \pi N$ Review: e.g. Prog.Part.Nucl.Phys. 67 (2012)

Slide 1113

Connect experiment $\&$ QCD in the non-perturbative regime

How do quarks get confined in hadrons?

Experimental study of hadronic reactions

Theoretical predictions of excited hadrons e.g. from relativistic quark models: to a particular shell, we additionally summarized the explicit positions of the excited model states in tables 11, 12,

Löring et al. EPJ A 10, 395 (2001), experimental spectrum: PDG 2000 \sim

In the past: elastic or charge exchange πN scattering

"missing resonance problem"

In recent years: photoproduction reactions

large data base, high quality polarization observables Prog.Part.Nucl.Phys. 125 (2022), Prog.Part.Nucl.Phys. 111 (2020)

In the future: electroproduction reactions

 10^5 data points for πN , ηN , KY , $\pi \pi N$ Review: e.g. Prog.Part.Nucl.Phys. 67 (2012)
of the Helmholtz Association Member of the Helmholtz Association

Electroproduction reactions

major progress in recent years, e.g., from JLab, MAMI, ...

- **10⁵** data points for πN , ηN , KY , $\pi \pi N$ electroproduction
- access the Q^2 dependence of the amplitude:

perturbative QCD \leftrightarrow quark confinement

N(1440)1/2 +

Baryon Transition Form Factors (TFFs)

*Q*² dependence of residues of helicity amplitudes \rightarrow conclusions on the nature of resonances

\blacksquare Zero crossing: important for quark models, DSE (meson cloud contributions or radial excitation of the nucleon?)

Reviews: e.g. Rev.Mod.Phys. 91 (2019), Prog.Part.Nucl.Phys. 136 (2024)

Baryon Transition Form Factors

N(1440)1/2 +

"points": NOT experimental data!

E extracted from πN and $\pi \pi N$ electroproduction data (CLAS)

PRC 80 (2009), PRC 86 (2012), PRC 93 (2016)

- unitary isobar model
- established resonances
- some parameters fixed to PDG BW values

Constraints from pion-induced reactions!

Baryon Transition Form Factors Y.-F. Wang et al. PRL 133 (2024)

from Julich-Bonn-Washington model, pole parameters instead of Breit-Wigner resonances ¨

Zero crossing at smaller *Q*²

TFFs defined independently of the hadronic final

state as (Workman et al. PRC 87 (2013)):

$$
H_h^{l\pm,l}(Q^2)=C_l\sqrt{\frac{p_{\pi N}}{\omega_0}\frac{2\pi(2J+1)z_p}{m_N\widetilde{R}_{\pi N}^{l\pm,l}}}\widetilde{\mathcal{H}}_h^{l\pm,l}(Q^2)\,,
$$

 $h = 1/2, 3/2$ helicity, H (= A or S) helicity amplitudes, $\widetilde{\mathcal{H}}$, \widetilde{R} residues, z_p pole position

> ⇒ constraints from photon- & pion-induced reactions!

$$
\mathcal{M}_{\mu\gamma^*}(k,W,Q^2) = R_{\ell'}(\lambda,q/q_\gamma)\left(V_{\mu\gamma^*}(k,W,Q^2) + \sum_{\kappa}\int\limits_0^\infty dp\, \rho^2\, \textit{T}_{\mu\kappa}(k,p,W)G_\kappa(p,W)V_{\kappa\gamma^*}(p,W,Q^2)\right)
$$

Input from photoproduction: $V_{\mu\gamma}(k, W, Q^2 = 0)$ M. Mai *et al.* PRC 103 (2021) **Input from** pion-induced reactions: $T_{\mu\kappa}(k, p, W) \rightarrow$ universal pole positions Member of the Helmholtz Association November 11, 2024 Slide 4 13

Photoproduction reactions

Constraints from pion-induced reactions!

Role of pion beams in baryon spectroscopy The role of meson beams in baryon beams in baryon spectroscopy in baryon spectroscopy in baryon spectroscopy in \mathcal{L} T_{error} and T_{error} are role of meson beams in baryon spectroscopy

light, non-strange sector

• Pion-induced reactions

$$
\pi N \rightarrow \begin{cases} \pi N \\ \eta N, K\Lambda, K\Sigma \\ \pi \pi N, \pi \eta N, \dots \end{cases}
$$
 Data!

• 2 complex amplitudes (g, h)

- Photon-induced reactions $\begin{cases} \pi N \\ \eta N, K\Lambda, K\Sigma \\ \pi\pi N, \pi n N, \dots \end{cases} \leftrightarrow \begin{cases} \pi N \\ \eta N, K\Lambda, K\Sigma \\ \pi\pi N, \pi n N, \dots \end{cases}$
- $\frac{1}{2}$ Final-state interaction as sub-process hadronic FS interaction as subprocess
- 4 (photo) or 6 (electro) complex amplitudes (CGLN F_i)

 $γ, γ[*]$ -induced reactions have **more d.o.f**, analysis **depends on** π**-induced data.** complex amplitudes (CGNL, ...) meson-induced reaction data (except complete experiment).

Pion-induced data: π*N* → η*N*

Pion-induced data: $\pi N \rightarrow \eta N$

$\mathsf{Pion\text{-}induced\ data: } \pi N \to \eta N$

Polarization observables: Impact on well-established $N(1650)1/2^-$

 \blacksquare *T*, *P*, *H*, *G*, *E* (CBELSA): very first data on *H*, *G* (and *P*) in this channel Muller (CBELSA/TAPS) PLB 803, 135323 (2020)

black lines: BnGa fit

other lines: predictions by various groups
Member of the Helmholtz Association Member of the Helmholtz Association November 11, 2024 Slide 8 113

PDG estimates $\frac{\Gamma_{\eta N}}{\Gamma_{tot}}$ (2010): *N*(1535)1/2⁻: 45-60% vs. *N*(1650)1/2⁻: 3-10%

 \rightarrow new polarization data (CLAS, MAMI, CBELSA) $\gamma N \rightarrow \eta N$

• new BnGa fit \rightarrow $N(1650)1/2^-$: $\frac{\Gamma_{\eta N}}{\Gamma_{tot}}$ $\frac{r_{\eta N}}{\Gamma_{tot}} = 33 \pm 4\%$ (PLB 803 (2020))

• new JüBo fit
$$
\rightarrow |\frac{\Gamma_{\pi N}^{1/2} \Gamma_{\eta N}^{1/2}}{\Gamma_{\text{tot}}}|=34(12)\%
$$
 vs. 18(3)% (before)
\n $\left(\frac{\Gamma_{\eta N}}{\Gamma_{\text{tot}}}\right) = 12\%$ vs. 7%)

Note: photocoupling $A_{1/2}$ also up to changes!

- $\eta\mathcal{N}$ residue $\mathcal{N}(1650)$ 1/2 $^-$ much larger
- Better pion-induced data to determine resonance

parameters! (especially: inelastic residues)

\mathcal{N}^* VS. Δ <code>resonance spectrum:</code> <code>recent</code> advances based on $\gamma\mathcal{N}$ data Table 80.2. The status of the ∆ resonances and their decays.

6 new *N* ∗ 's

Status as seen in

S. Navas *et al.* (Particle Data Group), Phys. Rev. D110, 030001 (2024)

Status as seen in

■ no new Δ 's, less 4 stars $\mathbf{r} = \mathbf{r} \cdot \mathbf{r$

new upgraded

 \rightarrow more & better data $\pi N \rightarrow K\Sigma$?

 $I = 1/2$ and $3/2$ contribution.

Pion-induced data base: *K*Σ **channels** − 0

 $\mathsf{Re\text{-}fit}$ without $\mathsf{K}^+\mathsf{\Sigma}^-\to$ much better description of $\mathsf{K}^+\Sigma^+$ (red dashed) JuBo EPJA 49 (2013) \rightarrow strong constraints on Δ resonances from $K^+\Sigma^-$

Recent advances for pion-induced data are plotted along with their elastic and total widths in Fig. 4. induced data

High-precision data from EPECUR Alekseev PRC 91 (2015) (blue points)

Recent advances for pion-induced data

HADES at GSI: $\pi^- p \to \pi^- p$, $\pi^+ \pi^- n$, $\pi^0 \pi^- p$ hades pro 102 (2020)

Member of the Helmholtz Association November 11, 2024 Slide 12113 (Figure from HADES PRC 102 (2020))

∆-π charged pions \rightarrow study decay of \mathcal{N}^* 's, Δ 's to $\rho \mathcal{N}!$

N-ρ (poorly known so far, not in PDG listings)

\ddotsc **BnGa fit:**

- dominated by $I = 1/2$, $J^P = \frac{1}{2}^{\pm}$, $\frac{3}{2}^{\pm}$ PWs
- $\overline{\mathbf{r}}$ $\pi^+\pi^-$ *n* main contribution: D_{13} , P_{11} & $\pi\Delta$, $\sigma\Delta$
- $\pi^0\pi^-p$ main contribution: D_{13} & ρN

 \Rightarrow branching ratios for $N(1535)\frac{1}{2}^{-}$, $N(1520)\frac{3}{2}^{-}$ $\rightarrow \rho N$

Summary

 N^* and Δ resonance spectrum: many open questions remain

large amount of new data from photoproduction \rightarrow some new states, updated parameters

access Q^2 dependence in electroproduction \rightarrow information on the inner structure

Prerequisite: well-determined resonance parameters!

\blacksquare pion-induced reactions:

- \bullet data enters photo- & electroproduction analyses
- direct determination of resonance parameters
- fewer d.o.f

Need data of high quality & quantity for all three reaction types!

Thank you for you attention!

Appendix

The Hyperon Spectrum (^Λ ∗ **'s and** Σ ∗ **'s)**

What happens if we replace a light quark with an *s* **quark?**

- \blacksquare Very little new experimental data in the last decades for the complete resonance region
- → spectrum much less known than *N*[∗] or ∆ but equally important to understand QCD at low energies!
	- 4 groups world-wide re-analyzed old *K* −*p* data over the complete resonance region
		- KSU, JPAC, ANL/Osaka, BnGa
		- JüBo: DCC analysis of $\overline{K}N$ reactions in progress

Prospects for new data:

- K_L facility at JLab: Strange Hadron Spectroscopy with a secondary K_L Beam at GlueX 2008.08215
- planned new experiment at ELSA in Bonn: $\gamma p \to K^+ \Lambda^* \to K^+ \Sigma^0 \pi^0$, $\gamma p \to K^+ \Sigma^* \to K^+ \Lambda \pi^0$
- PANDA at FAIR: $\bar{p}p \to \bar{Y}Y^*$: besides Ξ^* and Ω^* also Λ^* and Σ^* spectrum accessible 0903.3905

New

Quantum numbers updated

Exp. Phys. 2022, 083C01 (2022)

Status updated

How to determine TFFs? Jülich-Bonn-Washington parametrization

Example: Jülich-Bonn-Washington (JBW) parametrization M. Mai *et al.* PRC 103 (2021) **Underlying quantities:** Multipoles *E,L,M*

 $\mathcal{H} = \mathit{Res}\mathcal{A}$ or $\mathsf{Res}\mathcal{S}$ ("Helicity amplitudes", calculated from "multipole amplitude" \mathcal{M})

$$
\mathcal{M}_{\mu\gamma^*}(k, W, Q^2) = R_{\ell}(\lambda, q/q_{\gamma}) \left(V_{\mu\gamma^*}(k, W, Q^2) + \sum_{\kappa} \int_0^{\infty} dp \, p^2 \, T_{\mu\kappa}(k, p, W) G_{\kappa}(p, W) V_{\kappa\gamma^*}(p, W, Q^2) \right)
$$
\n
$$
\left\{\n\begin{array}{c}\n\text{Pseudo)-threshold behavior} \\
\text{with meson/photon momenta} \\
\text{with meson/photon momenta} \\
\lim_{k \to 0} E_{\ell+} = k^{\ell} \\
\lim_{q \to 0} L_{\ell+} = q^{\ell}\n\end{array}\n\right\} \xrightarrow{\text{For } Q^2 = 0 \text{ (real photons) identical to } Q^2 = 0 \text{ (real photons) identical to } Q^2 = 0 \text{ (real photons) } Q^2 = 0 \
$$

 σ simultaneous fit to πN , ηN , $K\Lambda$ electroproduction off proton ($W < 1.8$ GeV, $Q^2 < 8$ GeV 2)

- **n** Input from photoproduction: $V_{\mu\gamma}(k, W, Q^2 = 0)$
	- Input from pion-induced reactions: $T_{\mu\kappa}(k, p, W)$, $G_{\kappa}(p, W)$... in future is a position of the conduct statistical criteria (Akaike, Bayesian, Bayesian, model selection) ... in future: Bias-variance tradeoff with statistical criteria (Akaike, Bayesian, model selection) \rightarrow universal pole positions and residues (fixed in this study)

The light baryon spectrum:

Many open questions

- **nd** Missing resonances?
- **n** Different analyses often not agree on parameters or even existence of a state e
e

E.g., the Roper resonance $N(1440)1/2^+$: discussed since $>$ 50 years

(Review: e.g. Burket & Roberts Rev.Mod.Phys. 91 (2019))

- **n** q^3 quark models: first 1/2 $^-$ state lower than first 1/2 $^+$ state
- **n** lattice QCD: e.g. Lang 2017 Phys. Rev. D 95, 014510

Fig. from PRC 62 025207 (2000) Fig. from PRC 62 025207 (2000)
Member of the Helmholtz Associ

- not a standard Breit-Wigner shape
- influence by meson-baryon background interaction?
- effects from nearby thresholds?
- \rightarrow not a simple radial excitation of the nucleon?
- \rightarrow information from photo- and electroproduction! $(0^2$ dependence of helicity amplitudes)

(Review: Ramalho & Pena Prog.Part.Nucl.Phys. 136 (2024))

 L_{2T2} || P_{11} || S_{11}

 $J \pi || 1/2+ || 1/2-$

π

1000

1500

939

 \mathbb{L}_{2T2} || \mathbb{P}_{11} || \mathbb{S}_{11} $\int J \pi ||1/2+ ||1/2-$

Jülich-Bonn-Washington (JBW) parametrization

M. Mai et al. PRC 103 (2021), PRC 106 (2022), EPJ A 59 (2023) $M_{\mu\gamma^*}(k, W, Q^2) = R_{\ell'}(\lambda, q/q_{\gamma})$ $\sqrt{2}$ $V_{\mu\gamma}$ ^{*} (*k*, *W*, *Q*²) + \sum κ $\int_{0}^{\infty} dp p^2 T_{\mu\kappa}(k, p, W) G_{\kappa}(p, W) V_{\kappa\gamma^*}(p, W, Q^2)$ 0 ↑ (Pseudo)-threshold behavior (Pseudo)-threshold behavior (Pseudo)-threshold behavior Siegerts's theorem **Siegert(1973)** Siegerts's theorem **Siegert(1973)** Siegerts's theorem **Siegert(1973)** ...at pseudo-threshold ...at pseudo-threshold ...at pseudo-threshold For *Q2=0* (real photons) identical to For *Q2=0* (real photons) identical to For *Q2=0* (real photons) identical to Jülich-Bonn photoproduction amplitude Jülich-Bonn photoproduction amplitude Jülich-Bonn photoproduction amplitude **Amaldi et al.(1979) Tiator(2016) Amaldi et al.(1979) Tiator(2016) Tiator(2016)** with meson/photon momenta $\lim_{k\to 0} E_{\ell+} = k^{\ell}$ $\lim_{k \to 0} E_{\ell+} = k^{\ell}$
 $\lim_{q \to 0} L_{\ell+} = q^{\ell}$. . . $V_{\mu\gamma}$ ^{*}(*k*, *W*, *Q*²) = $V_{\mu\gamma}^{\text{JUBO}}(k, W) \cdot \tilde{F}_D(Q^2)$ $L_{e+} = q^e$
 $L_{e+} = q^e$
 $L_{e+} = q^e$
 $L_{e+} = q^e$
 $e^{-\beta_{\mu}^0 Q^2/m_{\mu}^2} \left(1 + Q^2/m_{\rho}^2 \beta_{\mu}^1 + (Q^2/m_{\rho}^2)^2 \beta_{\mu}^2\right)$ *κ* 0 *κ* 0) ⁺ [∑] *κ* ∫ 0 $V^{L_{\ell\pm}} = (\text{const.}) \cdot V^{E_{\ell\pm}}$ $\sqrt{2}$ $e^{-\beta_{\mu}^0 Q^2/m_p^2} \left(1 + Q^2/m_p^2 \beta_{\mu}^1 + (Q^2/m_p^2)^2 \beta_{\mu}^2\right)$ ← **Amaldi et al.(1979)** W, Q^2) = $V_{\mu\nu}^{JUBO}(k, W) \cdot \tilde{F}_D(Q^2)$. e^{μ} ^{*p*} e^{2/m_p^2} (1 + *O*²/*m*_{*n*}²)^{*n*}_{*d*}</sub>(*O*²/*m*_n²)²_{*β*²_{*d*}})²_{*B*²_{*d*}})²_{*B*²_{*d*}})²_{*B*²_{*d*}})²_{*B*²_{*d*}})²*B*²_{*d*}</sub>)²*B*²_{*d*}</sub>)²*B*²_{*d*}</sub>)²*B*²_* μ*) *dp p*² *Tμκ*(*k*, *p*, *W*)*Gκ*(*p*, *W*)*Vκγ**(*p*, *W*, *Q*² \sim $V_{\mu\gamma}(\lambda, q/q_{\gamma})\left(V_{\mu\gamma^*}(k, W, Q^{\dagger}) + \sum_{\kappa} \int_{\Omega} dp \, p^{\dagger} I_{\mu\gamma}$ -1.9 -0.95

- simultaneous fit to $\pi N, \eta N, K \Lambda$ electroproduction off proton (*W* < 1.8 GeV, Q^2 < 8 GeV²) 0.13 P ... even for a truncated complete electroproduction experiment electroproduction experiment experiment experiment of 0.06
	-

 $\overline{}$

■ Input from JüBo: $V_{\mu\gamma}(k, W, Q^2 = 0)$, $T_{\mu\kappa}(k, p, W)$, $\begin{bmatrix} -0.06 \\ -0.13 \end{bmatrix}$ $G_{\kappa}(p, W)$

 \rightarrow universal pole positions and residues (fixed in this study)

long-term goal: fit pion-, photo- and electron-induced reactions simultaneously November 11, 2024 **2.** 4. 6. **2. 4. 6. PERSON CONSUPRENT CONSUPRENT ASSOCIATION**
Member of the Helmholtz Association November 11, 2024 Slide 418 3. 2. 2. Perschungszentrum

simultaneous fit to πN , ηN , $K\Lambda$ electroproduction off	$\gamma^* p \rightarrow K\Lambda$ at $W = 1.7$ GeV
1.7	GeV
1.7	GeV
2.7	1.7
3.7	1.7
3.7	1.7
4.7	1.7
5.7	1.7
6.7	1.7
7.7	1.7
8.7	1.7
9.7	1.7
10.7	1.7
10.7	1.7
10.7	1.7
10.7	1.7
10.7	1.7
10.7	1.7
10.7	1.7
2.4	1.7
3.7	1.7
4.7	1.7
5.7	1.7
1.7	1.7
1.7	1.7
1.7	1.7
1.7	1.7
1.7	1.7

 $\overline{}$

¹ $\overline{1}$

Baryon Transition Form Factors Y.-F. Wang et al. PRL 133 (2024)

based on most recent JBW, pole parameters from JuBo2017 ¨

∆ states:

[ANL/OSAKA: Kamano Few Body Syst. 59, 24 (2018), MAID: Tiator et al. PRC94 (2016)]

Baryon Transition Form Factors Y.-F. Wang et al. PRL 133 (2024) C

Y.-F. Wang et al. PRL 133 (2024)

based on most recent JBW, pole parameters from JüBo2017

N^* states:

50 0 20 [ANL/OSAKA: Kamano Few Body Syst. 59, 24 (2018), MAID: Tiator et al. PRC94 (2016)]

Baryon Transition Form Factors Y.-F. Wang et al. PRL 133 (2024)

based on most recent JBW, pole parameters from JuBo2017 ¨

The Roper resonance $\mathcal{N}(1440)1/2^+$:

- Zero crossing in Re $A_{1/2}$ at smaller Q^2 than in Breit-Wigner determinations or in ANL/OSAKA [Kamano, Few Body Syst. 59, 24 (2018)]
- important for quark models, DSE: meson cloud contributions or radial excitation of the nucleon?

Transverse charge density ρ of $p \to N(1440)$ transition[.]

following Tiator et al. Chin. Phys. C 33 (2009)

study flavor decomposition, μ **and** \dot{d} **quark** distribution

Orange band: JBW, red line: MAID 2007. Insets: light/dark shades represent negative/positive values *b*: transverse position in xy-plane

Photoproduction in a semi-phenomenological approach **EPJA 50, 101 (2015)**

 $m = \pi, \eta, K, B = N, \Delta, \Lambda$

$T_{\mu\kappa}$: full hadronic *T*-matrix as in pion-induced reactions

Photoproduction potential: approximated by energy-dependent polynomials (field-theoretical description numerically too expensive)

$$
\mathbf{V}_{\mu\gamma}(E,q) = \frac{\gamma}{\sum_{\substack{\mathbf{p} \text{ odd} \\ \mathbf{p}^N_{\mu}}}^{\gamma} \mathbf{V}_{\mathbf{p}^N_{\mu}}} + \frac{\gamma}{N} \sum_{\substack{\mathbf{p}^N_{\mu} \text{ odd} \\ \mathbf{p}^N_{\mu}}}^{\gamma} \frac{\mathbf{V}_{\mathbf{p}^N_{\mu} \text{ odd}}} {\gamma^N_{\mu}} \mathbf{P}^N_{\mu}}^{\gamma} = \frac{\tilde{\gamma}^a_{\mu}(q)}{\mathbf{m}_N} P^N_{\mu}(E) + \sum_{i} \frac{\gamma^a_{\mu,i}(q) P^P_i(E)}{E - m^b_i}
$$

JUBo2024: Data base values 1 Christian Schneider

Update $\mathcal{K}^0\Sigma^+ \colon \Sigma$, *T*, *P*, *O_x*, *O_z* with CLAS Collaboration, 2404.19404 [nucl-ex]

