Opportunities with hadron beams for light baryon spectroscopy

November 11, 2024 | Deborah Rönchen | Institute for Advanced Simulation, Forschungszentrum Jülich

with contribution by M. Döring

Supported by DFG, MKW NRW HPC support by Jülich Supercomputing Centre

Connect experiment & QCD in the non-perturbative regime

How do quarks get confined in hadrons?

Experimental study of hadronic reactions

Theoretical predictions of excited hadrons e.g. from relativistic quark models:

Löring et al. EPJ A 10, 395 (2001), experimental spectrum: PDG 2000

In the past: elastic or charge exchange πN scattering

"missing resonance problem"

In recent years: photoproduction reactions

■ large data base, high quality polarization observables Prog.Part.Nucl.Phys. 125 (2022), Prog.Part.Nucl.Phys. 111 (2020)

In the future: electroproduction reactions

■ 10^5 data points for πN , ηN , KY, $\pi \pi N$ Review: e.g. Prog.Part.Nucl.Phys. 67 (2012)

Member of the Helmholtz Association

November 11, 2024

Slide 1113

Connect experiment & QCD in the non-perturbative regime

How do quarks get confined in hadrons?

Experimental study of hadronic reactions

Theoretical predictions of excited hadrons ... or lattice calculations (with some limitations):

In the past: elastic or charge exchange πN scattering

"missing resonance problem"

In recent years: photoproduction reactions

■ large data base, high quality polarization observables Prog.Part.Nucl.Phys. 125 (2022), Prog.Part.Nucl.Phys. 111 (2020)

In the future: electroproduction reactions

■ 10^5 data points for πN , ηN , KY, $\pi \pi N$ Review: e.g. Prog.Part.Nucl.Phys. 67 (2012)

source: ELSA: data: ELSA, JLab, MAM

Connect experiment & QCD in the non-perturbative regime

How do quarks get confined in hadrons?

Experimental study of hadronic reactions

Theoretical predictions of excited hadrons

... or Dyson-Schwinger approaches:

[Eichmann et al., Phys.Rev. D94 (2016), fig. from PoS LC2019 (2019) 003]

In the past: elastic or charge exchange πN scattering

"missing resonance problem"

In recent years: photoproduction reactions

- large data base, high quality polarization observables Prog.Part.Nucl.Phys. 125 (2022), Prog.Part.Nucl.Phys. 111 (2020)
- In the future: electroproduction reactions
 - \blacksquare 10⁵ data points for πN , ηN , KY, $\pi \pi N$ Review: e.g. Prog.Part.Nucl.Phys. 67 (2012)

Connect experiment & QCD in the non-perturbative regime

How do quarks get confined in hadrons?

Experimental study of hadronic reactions

Theoretical predictions of excited hadrons e.g. from relativistic quark models:

Löring et al. EPJ A 10, 395 (2001), experimental spectrum: PDG 2000

In the past: elastic or charge exchange πN scattering

"missing resonance problem"

In recent years: photoproduction reactions

■ large data base, high quality polarization observables Prog.Part.Nucl.Phys. 125 (2022), Prog.Part.Nucl.Phys. 111 (2020)

In the future: electroproduction reactions

■ 10^5 data points for πN , ηN , KY, $\pi \pi N$ Review: e.g. Prog.Part.Nucl.Phys. 67 (2012)

Member of the Helmholtz Association

November 11, 2024

Slide 1113

Electroproduction reactions

major progress in recent years, e.g., from JLab, MAMI, ...

- 10^5 data points for πN , ηN , KY, $\pi \pi N$ electroproduction
- access the Q^2 dependence of the amplitude: perturbative QCD \leftrightarrow quark confinement

 $N(1440)1/2^+$

Baryon Transition Form Factors (TFFs)

 Q^2 dependence of residues of helicity amplitudes ightarrow conclusions on the nature of resonances

 Zero crossing: important for quark models, DSE (meson cloud contributions or radial excitation of the nucleon?)

Reviews: e.g. Rev.Mod.Phys. 91 (2019), Prog.Part.Nucl.Phys. 136 (2024)

Figure from Prog. Part. Nucl. Phys. 136

Baryon Transition Form Factors

"points": NOT experimental data!

extracted from πN and $\pi \pi N$ electroproduction data (CLAS)

PRC 80 (2009), PRC 86 (2012), PRC 93 (2016)

- unitary isobar model
- established resonances
- some parameters fixed to PDG BW values

Constraints from pion-induced reactions!

Baryon Transition Form Factors

Y.-F. Wang et al. PRL 133 (2024)

from Jülich-Bonn-Washington model, pole parameters instead of Breit-Wigner resonances

TFFs defined independently of the hadronic final state as (Workman et al. PRC 87 (2013)):

$$H_h^{l\pm,l}(Q^2) = C_l \sqrt{\frac{p_{\pi N}}{\omega_0}} \frac{2\pi(2J+1)z_p}{m_N \widetilde{R}_{\pi N}^{l\pm,l}} \widetilde{H}_h^{l\pm,l}(Q^2),$$

h=1/2,3/2 helicity, \mathcal{H} (= \mathcal{A} or \mathcal{S}) helicity amplitudes, $\widetilde{\mathcal{H}}$, \widetilde{R} residues, z_p pole position

⇒ constraints from photon- & pion-induced reactions!

Zero crossing at smaller Q^2

$$\mathcal{M}_{\mu\gamma^*}(k,W,Q^2) = R_{\ell'}(\lambda,q/q_{\gamma}) \left(V_{\mu\gamma^*}(k,W,Q^2) + \sum_{\kappa} \int_{0}^{\infty} dp \, p^2 \, T_{\mu\kappa}(k,p,W) G_{\kappa}(p,W) V_{\kappa\gamma^*}(p,W,Q^2) \right)$$

■ Input from photoproduction: $V_{\mu\gamma}(k, W, Q^2 = 0)$

M. Mai et al. PRC 103 (2021)

Input from pion-induced reactions: $T_{\mu\kappa}(k,p,W) \rightarrow$ universal pole positions

Photoproduction reactions

Constraints from pion-induced reactions!

Role of pion beams in baryon spectroscopy

light, non-strange sector

Pion-induced reactions

$$\pi N \to \begin{cases} \pi N \\ \eta N, \ K\Lambda, \ K\Sigma \\ \pi \pi N, \pi \eta N, \dots \end{cases} \qquad \begin{array}{l} \text{Photon-induced reactions} \\ \gamma^{(*)} N \to \begin{cases} \pi N \\ \eta N, \ K\Lambda, \ K\Sigma \\ \pi \pi N, \pi \eta N, \dots \end{cases} \\ \\ \begin{array}{l} \text{Data!} \\ \end{cases} \qquad \begin{array}{l} \begin{cases} \pi^N \\ \eta^N, \ K\Lambda, \ K\Sigma \\ \pi \pi N, \pi \eta N, \dots \end{cases} \\ \\ \text{hedronic FS interaction as subpresses} \\ \end{cases}$$

2 complex amplitudes (q, h)

Photon-induced reactions

$$\gamma^{(*)}N \to \begin{cases} \pi N \\ \eta N, K\Lambda, K\Sigma \\ \pi \pi N, \pi \eta N, \dots \end{cases}$$

$$\begin{cases} \pi N \\ \eta N, K\Lambda, K\Sigma \\ \pi \pi N, \pi \eta N, \dots \end{cases} \leftrightarrow \begin{cases} \pi N \\ \eta N, K\Lambda, K\Sigma \\ \pi \pi N, \pi \eta N, \dots \end{cases}$$

- hadronic FS interaction as subprocess
- 4 (photo) or 6 (electro) complex amplitudes (CGLN F_i)

 γ , γ^* -induced reactions have **more d.o.f**, analysis **depends on** π **-induced data**.

Pion-induced data: $\pi N \to \eta N$

Pion-induced data: $\pi N \rightarrow \eta N$

Pion-induced data: $\pi N \rightarrow \eta N$

Polarization observables: Impact on well-established N(1650)1/2

■ T, P, H, G, E (CBELSA): very first data on H, G (and P) in this channel Müller (CBELSA/TAPS) PLB 803,

135323 (2020)

$$\gamma p \to \eta p$$

■ PDG estimates $\frac{\Gamma_{\eta N}}{\Gamma_{tot}}$ (2010): $N(1535)1/2^-$: 45-60% vs. $N(1650)1/2^-$: 3-10%

 \rightarrow new polarization data (CLAS, MAMI, CBELSA) $\gamma N \rightarrow \eta N$

- new BnGa fit $\to N(1650)1/2^-\colon \frac{\Gamma_{\eta N}}{\Gamma_{tot}} = 33 \pm 4\%$ (PLB 803 (2020))
- new JüBo fit $\rightarrow |\frac{\Gamma_{\pi N}^{1/2} \Gamma_{1/2}^{1/2}}{\Gamma_{\text{tot}}}| = 34(12)\% \text{ vs. } 18(3)\% \text{ (before)}$ (EPIA 58 (2022)) $(\frac{\Gamma_{\eta N}}{\Gamma_{\text{tot}}} = 12\% \text{ vs. } 7\% \text{)}$

Note: photocoupling $A_{1/2}$ also up to changes!

- \blacksquare ηN residue $N(1650)1/2^-$ much larger
- Better pion-induced data to determine resonance parameters! (especially: inelastic residues)

N^* vs. Δ resonance spectrum: recent advances based on γN data

6 new N*'s

			Status as seen in									
Particle	J^P	overall	$N\gamma$	$N\pi$	$\Delta \pi$	$N\sigma$	$N\eta$	ΛK	ΣK	$N\rho$	$N\omega$	$N\eta\prime$
N	$1/2^{+}$	****										
N(1440)	$1/2^{+}$	****	****	****	****	***						
N(1520)	$3/2^{-}$	****	****	****	****	**	****					
N(1535)	$1/2^{-}$	****	****	****	***	*	****					
N(1650)	$1/2^{-}$	****	****	****	***		****	*				
N(1675)	$5/2^{-}$	****	****	****	****	***	*	*	*			
N(1680)	$5/2^{+}$	****	****	****	****	***	*	*				
N(1700)	$3/2^{-}$	***	**	***	***	*	*			*		
$\mathbb{O}(1710)$	$1/2^{+}$	****	****	****	*		***	**		*	*	
N(1720)	$3/2^{+}$	****	****	****	***	*	*	****	*	*	*	
N(1860)	$5/2^{+}$	**	*	**		*	*					
N(1875)	$3/2^{-}$	***)	**	**	*	**	*	*		*	*	
N(1880)	$1/2^{+}$	***	**	*	**	*	*	**	**		**	
V(1895)	$1/2^{-}$	****	****	*	*		****	**	**	*	*	****
$\sqrt{V(1900)}$	$3/2^{+}$	****	****	**	**	*	*	**	**		*	**
N(1990)	$7/2^{+}$	**	**	**			*	*	*			
N(2000)	$5/2^{+}$	**	**	*	**	*	*				*	
$\sqrt{V(2040)}$	$3/2^{+}$	*		*								
N(2060)	$5/2^{-}$	***	***	**	*		*	*		*	*	
$\sqrt{V(2100)}$	$1/2^{+}$	***	**	***	**	**	*	*		*	*	**
$\mathcal{N}(2120)$	$3/2^{-}$	***	***	**	**	**		**			*	
N(2190)	$7/2^{-}$	****	****	****	****	**	*	**	*	*	*	
N(2220)	$9/2^{+}$	****	**	****			*	*	*			
N(2250)	$9/2^{-}$	****	**	****			*	*				
N(2300)	$1/2^{+}$	**		**								
N(2570)	$5/2^{-}$	**		**								
N(2600)	$11/2^{-}$	***		***								
N(2700)	$13/2^{+}$	**		**								

				Sta				
Particle	J^P	overall	$N\gamma$	$N\pi$	$\Delta \pi$	ΣK	$N\rho$	$\Delta \eta$
$\Delta(1232)$	$3/2^{+}$	****	****	****				
$\Delta(1600)$	$3/2^{+}$	****	****	***	****			
$\Delta(1620)$	1/2	****	****	****	****			
$\Delta(1700)$	$3/2^{-}$	****	****	****	****	*	*	
$\Delta(1750)$	$1/2^{+}$	*	*	*		*		
$\Delta(1900)$	$1/2^{-}$	***	***	***	*	**	*	
$\Delta(1905)$	$5/2^{+}$	****	****	****	**	*	*	**
$\Delta(1910)$	$1/2^{+}$	****	***	****	**	**		*
$\Delta(1920)$	$3/2^{+}$	***	***	***	***	**		**
$\Delta(1930)$	$5/2^{-}$	***	*	***	*	*		
$\Delta(1940)$	$3/2^{-}$	**	*	**	*			*
$\Delta(1950)$	$7/2^{+}$	****	****	****	**	***		
$\Delta(2000)$	$5/2^{+}$	**	*	**	*		*	
$\Delta(2150)$	$1/2^{-}$	*		*				
$\Delta(2200)$	$7/2^{-}$	***	***	**	***	**		
$\Delta(2300)$	9/2 ⁺	**		**				
$\Delta(2350)$	$5/2^{-}$	*		*				
$\Delta(2390)$	$7/2^{+}$	*		*				
$\Delta(2400)$	$9/2^{-}$	**	**	**				
$\Delta(2420)$	$11/2^{+}$	****	*	****				
$\Delta(2750)$	$13/2^{-}$	**		**				
$\Delta(2950)$	$15/2^{+}$	**		**				

no new Δ 's, less 4 stars

 \rightarrow more & better data $\pi N \rightarrow K\Sigma$? (I = 1/2 and 3/2 contribution)

S. Navas et al. (Particle Data Group), Phys. Rev. D110, 030001 (2024)

Pion-induced data base: $K\Sigma$ channels

- consistent P data

inconsistent

- no P data

Re-fit without $K^+\Sigma^- \to \text{much better description of } K^+\Sigma^+ \text{ (red dashed)}$ Jübo EPJA 49 (2013)

 \rightarrow strong constraints on Δ resonances from $K^+\Sigma^-$

Recent advances for pion-induced data

High-precision data from EPECUR Alekseev PRC 91 (2015) (blue points)

Recent advances for pion-induced data

HADES at GSI: $\pi^- p \to \pi^- p$, $\pi^+ \pi^- n$, $\pi^0 \pi^- p$ HADES PRC 102 (2020)

O world data HADES data

-- PWA
Refs. [8-9] PWA Bn-Ga

charged pions \rightarrow study decay of N^* 's, Δ 's to $\rho N!$

(poorly known so far, not in PDG listings)

BnGa fit:

- dominated by I = 1/2, $J^P = \frac{1}{2}^{\pm}$, $\frac{3}{2}^{\pm}$ PWs
- $\pi^+\pi^-n$ main contribution: D_{13} , P_{11} & $\pi\Delta$, σN
- $\blacksquare \pi^0 \pi^- p$ main contribution: $D_{13} \& \rho N$
- \Rightarrow branching ratios for $N(1535)\frac{1}{2}^-$, $N(1520)\frac{3}{2}^- \to \rho N$

J-PARC will also measure $\pi N \to \pi N, \pi \pi N, KY$ Slide 12113

Summary

 N^* and Δ resonance spectrum: many open questions remain

- large amount of new data from photoproduction \rightarrow some new states, updated parameters
- $lue{}$ access Q^2 dependence in electroproduction ightarrow information on the inner structure

Prerequisite: well-determined resonance parameters!

- pion-induced reactions:
 - data enters photo- & electroproduction analyses
 - direct determination of resonance parameters
 - fewer d.o.f

Need data of high quality & quantity for all three reaction types!

Thank you for you attention!

The Hyperon Spectrum (Λ^* 's and Σ^* 's)

What happens if we replace a light quark with an s quark?

- Very little new experimental data in the last decades for the complete resonance region
- ightarrow spectrum much less known than N^* or Δ but equally important to understand QCD at low energies!
 - 4 groups world-wide re-analyzed old K⁻p data over the complete resonance region
 - KSU, JPAC, ANL/Osaka, BnGa
 - JüBo: DCC analysis of $\bar{K}N$ reactions in progress

		Overall	Status as seen in —		
Particle	J^P	status	$N\overline{K}$	$\Lambda \pi$	Σπ
$\Sigma(1193)$	$1/2^{+}$	****			
$\Sigma(1385)$	$3/2^{+}$	****		****	****
$\Sigma(1580)$	$3/2^{-}$	*	*	*	*
$\Sigma(1620)$	$1/2^{-}$	*	*	*	*
$\Sigma(1660)$	$1/2^{+}$	***	***	***	***
$\Sigma(1670)$	$3/2^{-}$	****	****	****	****
$\Sigma(1750)$	$1/2^{-}$	***	***	**	***
$\Sigma(1775)$	$5/2^{-}$	****	****	****	**
$\Sigma(1780)$	$3/2^{+}$	*	*	*	*
$\Sigma(1880)$	$1/2^{+}$	**	**	*	
$\Sigma(1900)$	$1/2^{-}$	**	**	*	**
$\Sigma(1910)$	$3/2^{-}$	***	*	*	**
$\Sigma(1915)$	$5/2^{+}$	****	***	***	***
$\Sigma(1940)$	$3/2^{+}$	*	*		*
$\Sigma(2010)$	$3/2^{-}$	*	*	*	
$\Sigma(2030)$	$7/2^{+}$	****	****	****	**
$\Sigma(2070)$	$5/2^{+}$	*	*		*
$\Sigma(2080)$	$3/2^{+}$	*		*	
$\Sigma(2100)$	$7/2^{-}$	*	*	*	*
$\Sigma(2110)$	$1/2^{-}$	*	*	*	*
$\Sigma(2230)$	$3/2^{+}$	*	*	*	*
$\Sigma(2250)$		**	**	*	*
$\Sigma(2455)$		*	*		
$\Sigma(2620)$		*	*		
$\Sigma(3000)$		*	*	*	
$\Sigma(3170)$		*			

R. L. Workman et al. (Particle Data Group), Prog. Theor.

Quantum numbers updated

Exp. Phys. 2022, 083C01 (2022

Prospects for new data:

- lacksquare \mathcal{K}_L facility at JLab: Strange Hadron Spectroscopy with a secondary \mathcal{K}_L Beam at GlueX 2008.08215
- $\blacksquare \ \, \text{planned new experiment at ELSA in Bonn:} \ \, \gamma p \to K^+ \Lambda^* \to K^+ \Sigma^0 \pi^0, \, \gamma p \to K^+ \Sigma^* \to K^+ \Lambda \pi^0$
- PANDA at FAIR: $\bar{p}p \to \bar{Y}Y^*$: besides Ξ^* and Ω^* also Λ^* and Σ^* spectrum accessible 0903.3905

 $\widetilde{\mathcal{H}}=\mathit{Res}\mathcal{A}$ or $\mathit{Res}\mathcal{S}$ ("Helicity amplitudes", calculated from "multipole amplitude" \mathcal{M})

$$\mathcal{M}_{\mu\gamma^*}(k,W,Q^2) = R_{\ell'}(\lambda,q/q_{\gamma}) \left(V_{\mu\gamma^*}(k,W,Q^2) + \sum_{\kappa} \int_{0}^{\infty} dp \, p^2 \, T_{\mu\kappa}(k,p,W) G_{\kappa}(p,W) V_{\kappa\gamma^*}(p,W,Q^2) \right)$$

(Pseudo)-threshold behavior with meson/photon momenta

$$\begin{split} \lim_{k \to 0} E_{\ell+} &= k^{\ell} \\ \lim_{q \to 0} L_{\ell+} &= q^{\ell} \end{split}$$

For Q^2 =0 (real photons) identical to Jülich-Bonn photoproduction amplitude

$$\begin{split} V_{\mu\gamma*}(k,W,Q^2) &= V_{\mu\gamma}^{\rm JUBO}(k,W) \cdot \bar{F}_D(Q^2) \cdot \\ & e^{-\beta_{\nu}^0 Q^2/m_p^2} \left(1 + Q^2/m_p^2 \beta_{\mu}^1 + (Q^2/m_p^2)^2 \beta_{\mu}^2 \right) \end{split}$$

Siegerts's theorem Siegert(1973)
Amaldi et al.(1979)
Tiator(2016)

$$V^{L_{\ell^{\pm}}} = (\text{const.}) \cdot V^{E_{\ell^{\pm}}}$$

.at pseudo-threshold

- simultaneous fit to πN , ηN , $K\Lambda$ electroproduction off proton (W < 1.8 GeV, $Q^2 < 8 \text{ GeV}^2$)
- Input from photoproduction: $V_{\mu\gamma}(k,W,Q^2=0)$
- Input from pion-induced reactions: $T_{\mu\kappa}(k, p, W)$, $G_{\kappa}(p, W)$ \rightarrow universal pole positions and residues (fixed in this study)

The light baryon spectrum:

Many open questions

- Missing resonances?
- Different analyses often not agree on parameters or even existence of a state

E.g., the Roper resonance $N(1440)1/2^+$: discussed since > 50 years

- (Review: e.g. Burket & Roberts Rev. Mod. Phys. 91 (2019)) \mathbf{q}^3 quark models: first $1/2^-$ state lower than first $1/2^+$ state
- lattice QCD: e.g. Lang 2017 Phys. Rev. D 95, 014510

- not a standard Breit-Wigner shape
- influence by meson-baryon background interaction?
- effects from nearby thresholds?
- \rightarrow not a simple radial excitation of the nucleon?
- \rightarrow information from photo- and electroproduction! $(Q^2$ dependence of helicity amplitudes)

(Review: Ramalho & Pena Prog.Part.Nucl.Phys. 136 (2024))

Fig. from PRC 62 025207 (2000)

Jülich-Bonn-Washington (JBW) parametrization

M. Mai et al. PRC 103 (2021), PRC 106 (2022), EPJ A 59 (2023)

$$\mathcal{M}_{\mu\gamma^*}(k,W,Q^2) = R_{\ell'}(\lambda,q/q_{\gamma}) \left(V_{\mu\gamma^*}(k,W,Q^2) + \sum_{\kappa} \int_{0}^{\infty} dp \, p^2 \, T_{\mu\kappa}(k,p,W) G_{\kappa}(p,W) V_{\kappa\gamma^*}(p,W,Q^2) \right)$$

(Pseudo)-threshold behavior with meson/photon momenta

$$\lim_{k \to 0} E_{\ell+} = k^{\ell}$$
$$\lim_{q \to 0} L_{\ell+} = q^{\ell}$$

For Q²=0 (real photons) identical to Jülich-Bonn photoproduction amplitude

$$\begin{split} V_{\mu\gamma^a}(k,W,Q^2) &= V_{\mu\gamma}^{\rm JUBO}(k,W) \cdot \tilde{F}_D(Q^2) \cdot \\ & e^{-\beta_\rho^0 Q^2/m_\rho^2} \left(1 + Q^2/m_\rho^2 \beta_\mu^1 + (Q^2/m_\rho^2)^2 \beta_\mu^2 \right) \end{split}$$

Siegerts's theorem siegert(1973) Amaldi et al.(1979) Tiator(2016) $V^{L_{\ell\pm}} = (\mathrm{const.}) \cdot V^{E_{\ell\pm}}$...at pseudo-threshold

- simultaneous fit to πN , ηN , $K\Lambda$ electroproduction off proton (W < 1.8 GeV, $Q^2 < 8$ GeV²)
- 533 fit parameters, 110.281 data points
- Input from JüBo: $V_{\mu\gamma}(k,W,Q^2=0)$, $T_{\mu\kappa}(k,\rho,W)$, $G_{\kappa}(\rho,W)$
 - \rightarrow universal pole positions and residues (fixed in this study)
- long-term goal: fit pion-, photo- and electron-induced reactions simultaneously

 $\gamma^* p o K \Lambda$ at W= 1.7 GeV

November 11, 2024

based on most recent JBW, pole parameters from JüBo2017

Δ states:

Baryon Transition Form Factors

Y.-F. Wang et al. PRL 133 (2024)

based on most recent JBW, pole parameters from JüBo2017

N^* states:

[ANL/OSAKA: Kamano Few Body Syst. 59, 24 (2018), MAID: Hator et al. PRC94 (2018)

Baryon Transition Form Factors

Y.-F. Wang et al. PRL 133 (2024)

based on most recent JBW, pole parameters from JüBo2017

The Roper resonance $N(1440)1/2^+$:

- Zero crossing in ReA_{1/2} at smaller Q² than in Breit-Wigner determinations or in ANL/OSAKA [Kamano, Few Body Syst. 59, 24 (2018)]
- important for quark models, DSE: meson cloud contributions or radial excitation of the nucleon?

Transverse charge density ρ of $p \to N(1440)$ transition:

following Tiator et al. Chin. Phys. C 33 (2009)

study flavor decomposition, u and d quark distribution

Orange band: JBW, red line: MAID 2007. Insets: light/dark shades represent negative/positive values b: transverse position in xy-plane

Multipole amplitude

$$M^{IJ}_{\mu\gamma}=V^{IJ}_{\mu\gamma}+\sum_{\kappa}T^{IJ}_{\mu\kappa}G_{\kappa}V^{IJ}_{\kappa\gamma}$$
 (partial wave basis)

$$m = \pi$$
, η , K , $B = N$, Δ , Λ

 $T_{\mu\kappa}$: full hadronic T-matrix as in pion-induced reactions

Photoproduction potential: approximated by energy-dependent polynomials (field-theoretical description numerically too expensive)

$$\mathbf{V}_{\mu\gamma}(E,q) = \underbrace{\begin{array}{c} \gamma \\ N \end{array}}_{\mathbf{P}_{\mu}^{NP}} \underbrace{\begin{array}{c} m \\ B \end{array}}_{B} + \underbrace{\begin{array}{c} \gamma \\ N^{*}, \Delta^{*} \\ \mathbf{P}_{i}^{P} \end{array}}_{\mathbf{P}_{i}^{P}} \underbrace{\begin{array}{c} m \\ \gamma_{\mu} \end{array}}_{B}$$

$$=\frac{\tilde{\gamma}_{\mu}^{a}(q)}{m_{N}}P_{\mu}^{\mathsf{NP}}(E)+\sum_{i}\frac{\gamma_{\mu;i}^{a}(q)P_{i}^{\mathsf{P}}(E)}{E-m_{i}^{b}}$$

Reaction	Observables (# data points)	p./channel
$\pi N \to \pi N$	PWA GW-SAID WI08 (ED solution)	8,396
$\pi^- p \rightarrow \eta n$	$d\sigma/d\Omega$ (676), P (79)	755
$\pi^- p \to K^0 \Lambda$	$d\sigma/d\Omega$ (814), P (472), eta (72)	1,358
$\pi^- p \to K^0 \Sigma^0$	$d\sigma/d\Omega$ (470), P (120)	590
$\pi^- p \rightarrow K^+ \Sigma^-$	$d\sigma/d\Omega$ (150)	150
$\pi^+ p \to K^+ \Sigma^+$	$d\sigma/d\Omega$ (1124), P (551) , eta (7)	1,682
$\gamma p o \pi^0 p$	$d\sigma/d\Omega$ (18721), Σ (3287), P (768), T (1404), $\Delta\sigma_{31}$ (140),	
	G (393+198), H (225), E (1227+495), F (397), $C_{x_i'}$ (74), $C_{z_i'}$ (26)	26,662
$\gamma p \rightarrow \pi^+ n$	$d\sigma/d\Omega$ (5670), Σ (1456), P (265), T (718), $\Delta\sigma_{31}$ (231),	
	G (86+217), H (128), E (903)	9,457
$\gamma p o \eta p$	$d\sigma/d\Omega$ (9112+320), Σ (535+80), P (63), T (291), F (144),	
	E (306), G (47), H (56)	10,554
$\gamma p \to K^+ \Lambda$	$d\sigma/d\Omega$ (2563), P (1663), Σ (459), T (383),	
	$C_{x'}$ (121), $C_{z'}$ (123), $O_{x'}$ (66), $O_{z'}$ (66), O_x (314), O_z (314),	6,072
$\gamma p \to K^+ \Sigma^0$	$d\sigma/d\Omega$ (4381), P (402), Σ (280)	
	T (127) , $C_{x'}$ (94), $C_{z'}$ (94), O_x (127), O_z (127)	5,632
$\gamma p \to K^0 \Sigma^+$	$d\sigma/d\Omega$ (281), P (167)	448
	in total	73,066

Update $K^0\Sigma^+$: Σ , T, P, O_x , O_z with CLAS Collaboration, 2404.19404 [nucl-ex]

